.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/03_connectivity/plot_inverse_covariance_connectome.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_connectivity_plot_inverse_covariance_connectome.py: Computing a connectome with sparse inverse covariance ======================================================= This example constructs a functional connectome using the sparse inverse covariance. We use the `MSDL atlas `_ of functional regions in movie watching, and the :class:`nilearn.maskers.NiftiMapsMasker` to extract time series. Note that the inverse covariance (or precision) contains values that can be linked to *negated* partial correlations, so we negated it for display. As the MSDL atlas comes with (x, y, z) :term:`MNI` coordinates for the different regions, we can visualize the matrix as a graph of interaction in a brain. To avoid having too dense a graph, we represent only the 20% edges with the highest values. .. include:: ../../../examples/masker_note.rst .. GENERATED FROM PYTHON SOURCE LINES 27-29 Retrieve the atlas and the data -------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 29-43 .. code-block:: default from nilearn import datasets atlas = datasets.fetch_atlas_msdl() # Loading atlas image stored in 'maps' atlas_filename = atlas['maps'] # Loading atlas data stored in 'labels' labels = atlas['labels'] # Loading the functional datasets data = datasets.fetch_development_fmri(n_subjects=1) # print basic information on the dataset print('First subject functional nifti images (4D) are at: %s' % data.func[0]) # 4D data .. rst-class:: sphx-glr-script-out Out: .. code-block:: none First subject functional nifti images (4D) are at: /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz .. GENERATED FROM PYTHON SOURCE LINES 44-46 Extract time series -------------------- .. GENERATED FROM PYTHON SOURCE LINES 46-53 .. code-block:: default from nilearn.maskers import NiftiMapsMasker masker = NiftiMapsMasker(maps_img=atlas_filename, standardize=True, memory='nilearn_cache', verbose=5) time_series = masker.fit_transform(data.func[0], confounds=data.confounds) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [NiftiMapsMasker.fit_transform] loading regions from /home/nicolas/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii Resampling maps /home/nicolas/GitRepos/nilearn-fork/nilearn/_utils/cache_mixin.py:304: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1. [Memory]0.0s, 0.0min : Loading resample_img... ________________________________________resample_img cache loaded - 0.0s, 0.0min [Memory]0.1s, 0.0min : Loading _filter_and_extract... __________________________________filter_and_extract cache loaded - 0.0s, 0.0min .. GENERATED FROM PYTHON SOURCE LINES 54-56 Compute the sparse inverse covariance -------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 56-65 .. code-block:: default try: from sklearn.covariance import GraphicalLassoCV except ImportError: # for Scitkit-Learn < v0.20.0 from sklearn.covariance import GraphLassoCV as GraphicalLassoCV estimator = GraphicalLassoCV() estimator.fit(time_series) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none GraphicalLassoCV() .. GENERATED FROM PYTHON SOURCE LINES 66-68 Display the connectome matrix ------------------------------ .. GENERATED FROM PYTHON SOURCE LINES 68-76 .. code-block:: default from nilearn import plotting # Display the covariance # The covariance can be found at estimator.covariance_ plotting.plot_matrix(estimator.covariance_, labels=labels, figure=(9, 7), vmax=1, vmin=-1, title='Covariance') .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_001.png :alt: plot inverse covariance connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 77-79 And now display the corresponding graph ---------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 79-85 .. code-block:: default coords = atlas.region_coords plotting.plot_connectome(estimator.covariance_, coords, title='Covariance') .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_002.png :alt: plot inverse covariance connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 86-89 Display the sparse inverse covariance -------------------------------------- we negate it to get partial correlations .. GENERATED FROM PYTHON SOURCE LINES 89-93 .. code-block:: default plotting.plot_matrix(-estimator.precision_, labels=labels, figure=(9, 7), vmax=1, vmin=-1, title='Sparse inverse covariance') .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_003.png :alt: plot inverse covariance connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 94-96 And now display the corresponding graph ---------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 96-101 .. code-block:: default plotting.plot_connectome(-estimator.precision_, coords, title='Sparse inverse covariance') plotting.show() .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_004.png :alt: plot inverse covariance connectome :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_004.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 102-108 3D visualization in a web browser --------------------------------- An alternative to :func:`nilearn.plotting.plot_connectome` is to use :func:`nilearn.plotting.view_connectome` that gives more interactive visualizations in a web browser. See :ref:`interactive-connectome-plotting` for more details. .. GENERATED FROM PYTHON SOURCE LINES 108-116 .. code-block:: default view = plotting.view_connectome(-estimator.precision_, coords) # In a Jupyter notebook, if ``view`` is the output of a cell, it will # be displayed below the cell view .. raw:: html


.. GENERATED FROM PYTHON SOURCE LINES 117-120 .. code-block:: default # uncomment this to open the plot in a web browser: # view.open_in_browser() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 14.608 seconds) **Estimated memory usage:** 431 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_inverse_covariance_connectome.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/03_connectivity/plot_inverse_covariance_connectome.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_inverse_covariance_connectome.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_inverse_covariance_connectome.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_