.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/03_connectivity/plot_data_driven_parcellations.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_connectivity_plot_data_driven_parcellations.py: Clustering methods to learn a brain parcellation from fMRI ========================================================== We use spatially-constrained Ward-clustering, KMeans, Hierarchical KMeans and Recursive Neighbor Agglomeration (ReNA) to create a set of parcels. In a high dimensional regime, these methods can be interesting to create a 'compressed' representation of the data, replacing the data in the fMRI images by mean signals on the parcellation, which can subsequently be used for statistical analysis or machine learning. Also, these methods can be used to learn functional connectomes and subsequently for classification tasks or to analyze data at a local level. References ---------- Which clustering method to use, an empirical comparison can be found in this paper: * Bertrand Thirion, Gael Varoquaux, Elvis Dohmatob, Jean-Baptiste Poline. `Which fMRI clustering gives good brain parcellations ? `_ Frontiers in Neuroscience, 2014. This parcellation may be useful in a supervised learning, see for instance: * Vincent Michel, Alexandre Gramfort, Gael Varoquaux, Evelyn Eger, Christine Keribin, Bertrand Thirion. `A supervised clustering approach for fMRI-based inference of brain states. `_. Pattern Recognition, Elsevier, 2011. The big picture discussion corresponding to this example can be found in the documentation section :ref:`parcellating_brain`. .. GENERATED FROM PYTHON SOURCE LINES 42-46 Download a brain development fmri dataset and turn it to a data matrix ----------------------------------------------------------------------- We download one subject of the movie watching dataset from Internet .. GENERATED FROM PYTHON SOURCE LINES 46-63 .. code-block:: default from matplotlib import patches, ticker import matplotlib.pyplot as plt from nilearn.image import get_data import numpy as np from nilearn.image import mean_img, index_img from nilearn import plotting import time from nilearn.regions import Parcellations from nilearn import datasets dataset = datasets.fetch_development_fmri(n_subjects=1) # print basic information on the dataset print('First subject functional nifti image (4D) is at: %s' % dataset.func[0]) # 4D data .. rst-class:: sphx-glr-script-out Out: .. code-block:: none First subject functional nifti image (4D) is at: /home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz .. GENERATED FROM PYTHON SOURCE LINES 64-69 Brain parcellations with Ward Clustering ---------------------------------------- Transforming list of images to data matrix and build brain parcellations, all can be done at once using `Parcellations` object. .. GENERATED FROM PYTHON SOURCE LINES 69-100 .. code-block:: default # Computing ward for the first time, will be long... This can be seen by # measuring using time start = time.time() # Agglomerative Clustering: ward # We build parameters of our own for this object. Parameters related to # masking, caching and defining number of clusters and specific parcellations # method. ward = Parcellations(method='ward', n_parcels=1000, standardize=False, smoothing_fwhm=2., memory='nilearn_cache', memory_level=1, verbose=1) # Call fit on functional dataset: single subject (less samples). ward.fit(dataset.func) print("Ward agglomeration 1000 clusters: %.2fs" % (time.time() - start)) # We compute now ward clustering with 2000 clusters and compare # time with 1000 clusters. To see the benefits of caching for second time. # We initialize class again with n_parcels=2000 this time. start = time.time() ward = Parcellations(method='ward', n_parcels=2000, standardize=False, smoothing_fwhm=2., memory='nilearn_cache', memory_level=1, verbose=1) ward.fit(dataset.func) print("Ward agglomeration 2000 clusters: %.2fs" % (time.time() - start)) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [MultiNiftiMasker.fit] Loading data from [/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz] [MultiNiftiMasker.fit] Computing mask /home/nicolas/GitRepos/nilearn-fork/nilearn/_utils/cache_mixin.py:304: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1. [MultiNiftiMasker.transform] Resampling mask [Parcellations] Loading data [MultiNiftiMasker.transform_single_imgs] Loading data from Nifti1Image('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') [MultiNiftiMasker.transform_single_imgs] Smoothing images [MultiNiftiMasker.transform_single_imgs] Extracting region signals [MultiNiftiMasker.transform_single_imgs] Cleaning extracted signals [Parcellations] computing ward ________________________________________________________________________________ [Memory] Calling nilearn.regions.parcellations._estimator_fit... _estimator_fit(array([[-0.005809, ..., -0.000158], ..., [-0.014593, ..., -0.00062 ]]), AgglomerativeClustering(connectivity=<24256x24256 sparse matrix of type '' with 162682 stored elements in COOrdinate format>, memory=Memory(location=nilearn_cache/joblib), n_clusters=1000)) ________________________________________________________________________________ [Memory] Calling sklearn.cluster._agglomerative.ward_tree... ward_tree(array([[-0.005809, ..., -0.014593], ..., [-0.000158, ..., -0.00062 ]]), connectivity=<24256x24256 sparse matrix of type '' with 162682 stored elements in COOrdinate format>, n_clusters=1000, return_distance=False) ________________________________________________________ward_tree - 2.2s, 0.0min ____________________________________________________estimator_fit - 2.3s, 0.0min Ward agglomeration 1000 clusters: 8.14s [MultiNiftiMasker.fit] Loading data from [/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz] [MultiNiftiMasker.fit] Computing mask /home/nicolas/GitRepos/nilearn-fork/nilearn/_utils/cache_mixin.py:304: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1. [MultiNiftiMasker.transform] Resampling mask [Parcellations] Loading data [Parcellations] computing ward ________________________________________________________________________________ [Memory] Calling nilearn.regions.parcellations._estimator_fit... _estimator_fit(array([[-0.005809, ..., -0.000158], ..., [-0.014593, ..., -0.00062 ]]), AgglomerativeClustering(connectivity=<24256x24256 sparse matrix of type '' with 162682 stored elements in COOrdinate format>, memory=Memory(location=nilearn_cache/joblib), n_clusters=2000)) ________________________________________________________________________________ [Memory] Calling sklearn.cluster._agglomerative.ward_tree... ward_tree(array([[-0.005809, ..., -0.014593], ..., [-0.000158, ..., -0.00062 ]]), connectivity=<24256x24256 sparse matrix of type '' with 162682 stored elements in COOrdinate format>, n_clusters=2000, return_distance=False) ________________________________________________________ward_tree - 1.9s, 0.0min ____________________________________________________estimator_fit - 2.1s, 0.0min Ward agglomeration 2000 clusters: 5.43s .. GENERATED FROM PYTHON SOURCE LINES 101-106 Visualize: Brain parcellations (Ward) ..................................... First, we display the parcellations of the brain image stored in attribute `labels_img_` .. GENERATED FROM PYTHON SOURCE LINES 106-119 .. code-block:: default ward_labels_img = ward.labels_img_ # Now, ward_labels_img are Nifti1Image object, it can be saved to file # with the following code: ward_labels_img.to_filename('ward_parcellation.nii.gz') first_plot = plotting.plot_roi(ward_labels_img, title="Ward parcellation", display_mode='xz') # Grab cut coordinates from this plot to use as a common for all plots cut_coords = first_plot.cut_coords .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_001.png :alt: plot data driven parcellations :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 120-126 Compressed representation of Ward clustering ............................................ Second, we illustrate the effect that the clustering has on the signal. We show the original data, and the approximation provided by the clustering by averaging the signal on each parcel. .. GENERATED FROM PYTHON SOURCE LINES 126-160 .. code-block:: default # Grab number of voxels from attribute mask image (mask_img_). original_voxels = np.sum(get_data(ward.mask_img_)) # Compute mean over time on the functional image to use the mean # image for compressed representation comparisons mean_func_img = mean_img(dataset.func[0]) # Compute common vmin and vmax vmin = np.min(get_data(mean_func_img)) vmax = np.max(get_data(mean_func_img)) plotting.plot_epi(mean_func_img, cut_coords=cut_coords, title='Original (%i voxels)' % original_voxels, vmax=vmax, vmin=vmin, display_mode='xz') # A reduced dataset can be created by taking the parcel-level average: # Note that Parcellation objects with any method have the opportunity to # use a `transform` call that modifies input features. Here it reduces their # dimension. Note that we `fit` before calling a `transform` so that average # signals can be created on the brain parcellations with fit call. fmri_reduced = ward.transform(dataset.func) # Display the corresponding data compressed using the parcellation using # parcels=2000. fmri_compressed = ward.inverse_transform(fmri_reduced) plotting.plot_epi(index_img(fmri_compressed, 0), cut_coords=cut_coords, title='Ward compressed representation (2000 parcels)', vmin=vmin, vmax=vmax, display_mode='xz') # As you can see below, this approximation is almost good, although there # are only 2000 parcels, instead of the original 60000 voxels .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_002.png :alt: plot data driven parcellations :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_003.png :alt: plot data driven parcellations :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_003.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [Parcellations.transform] loading data from Nifti1Image('ward_parcellation.nii.gz') [Parcellations.transform] loading data from Nifti1Image( shape=(50, 59, 50), affine=array([[ 4., 0., 0., -96.], [ 0., 4., 0., -132.], [ 0., 0., 4., -78.], [ 0., 0., 0., 1.]]) ) ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract(, , { 'background_label': 0, 'detrend': False, 'dtype': None, 'high_pass': None, 'high_variance_confounds': False, 'labels': None, 'labels_img': , 'low_pass': None, 'mask_img': , 'reports': True, 'smoothing_fwhm': 2.0, 'standardize': False, 'standardize_confounds': True, 'strategy': 'mean', 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=None, sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=1) [NiftiLabelsMasker.transform_single_imgs] Loading data from Nifti1Image('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') [NiftiLabelsMasker.transform_single_imgs] Smoothing images [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 2.0s, 0.0min .. GENERATED FROM PYTHON SOURCE LINES 161-168 Brain parcellations with KMeans Clustering ------------------------------------------ We use the same approach as with building parcellations using Ward clustering. But, in the range of a small number of clusters, it is most likely that we want to use standardization. Indeed with standardization and smoothing, the clusters will form as regions. .. GENERATED FROM PYTHON SOURCE LINES 168-182 .. code-block:: default # class/functions can be used here as they are already imported above. # This object uses method='kmeans' for KMeans clustering with 10mm smoothing # and standardization ON start = time.time() kmeans = Parcellations(method='kmeans', n_parcels=50, standardize=True, smoothing_fwhm=10., memory='nilearn_cache', memory_level=1, verbose=1) # Call fit on functional dataset: single subject (less samples) kmeans.fit(dataset.func) print("KMeans clusters: %.2fs" % (time.time() - start)) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [MultiNiftiMasker.fit] Loading data from [/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz] [MultiNiftiMasker.fit] Computing mask /home/nicolas/GitRepos/nilearn-fork/nilearn/_utils/cache_mixin.py:304: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1. [MultiNiftiMasker.transform] Resampling mask [Parcellations] Loading data [MultiNiftiMasker.transform_single_imgs] Loading data from Nifti1Image('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') [MultiNiftiMasker.transform_single_imgs] Smoothing images [MultiNiftiMasker.transform_single_imgs] Extracting region signals [MultiNiftiMasker.transform_single_imgs] Cleaning extracted signals [Parcellations] computing kmeans ________________________________________________________________________________ [Memory] Calling nilearn.regions.parcellations._estimator_fit... _estimator_fit(array([[-0.003029, ..., -0.000795], ..., [ 0.008941, ..., -0.002018]]), MiniBatchKMeans(n_clusters=50, random_state=0)) ____________________________________________________estimator_fit - 0.8s, 0.0min KMeans clusters: 5.80s .. GENERATED FROM PYTHON SOURCE LINES 183-187 Visualize: Brain parcellations (KMeans) ....................................... Grab parcellations of brain image stored in attribute `labels_img_` .. GENERATED FROM PYTHON SOURCE LINES 187-197 .. code-block:: default kmeans_labels_img = kmeans.labels_img_ display = plotting.plot_roi(kmeans_labels_img, mean_func_img, title="KMeans parcellation", display_mode='xz') # kmeans_labels_img is a Nifti1Image object, it can be saved to file with # the following code: kmeans_labels_img.to_filename('kmeans_parcellation.nii.gz') .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_004.png :alt: plot data driven parcellations :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_004.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 198-214 Brain parcellations with Hierarchical KMeans Clustering ------------------------------------------------------- As the number of images from which we try to cluster grows, voxels display more and more specific activity patterns causing KMeans clusters to be very unbalanced with a few big clusters and many voxels left as singletons. Hierarchical Kmeans algorithm is tailored to enforce more balanced clusterings. To do this, Hierarchical Kmeans does a first Kmeans clustering in square root of n_parcels. In a second step, it clusters voxels inside each of these parcels in m pieces with m adapted to the size of the cluster in order to have n balanced clusters in the end. This object uses method='hierarchical_kmeans' for Hierarchical KMeans clustering and 10mm smoothing and standardization to compare with the previous method. .. GENERATED FROM PYTHON SOURCE LINES 214-222 .. code-block:: default start = time.time() hkmeans = Parcellations(method='hierarchical_kmeans', n_parcels=50, standardize=True, smoothing_fwhm=10, memory='nilearn_cache', memory_level=1, verbose=1) # Call fit on functional dataset: single subject (less samples) hkmeans.fit(dataset.func) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [MultiNiftiMasker.fit] Loading data from [/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz] [MultiNiftiMasker.fit] Computing mask /home/nicolas/GitRepos/nilearn-fork/nilearn/_utils/cache_mixin.py:304: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1. [MultiNiftiMasker.transform] Resampling mask [Parcellations] Loading data [MultiNiftiMasker.transform_single_imgs] Loading data from Nifti1Image('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') [MultiNiftiMasker.transform_single_imgs] Smoothing images [MultiNiftiMasker.transform_single_imgs] Extracting region signals [MultiNiftiMasker.transform_single_imgs] Cleaning extracted signals [Parcellations] computing hierarchical_kmeans ________________________________________________________________________________ [Memory] Calling nilearn.regions.parcellations._estimator_fit... _estimator_fit(array([[-0.003029, ..., -0.000795], ..., [ 0.008941, ..., -0.002018]]), HierarchicalKMeans(n_clusters=50)) ____________________________________________________estimator_fit - 7.7s, 0.1min Parcellations(memory=Memory(location=nilearn_cache/joblib), memory_level=1, method='hierarchical_kmeans', smoothing_fwhm=10, standardize=True) .. GENERATED FROM PYTHON SOURCE LINES 223-227 Visualize: Brain parcellations (Hierarchical KMeans) .................................................... Grab parcellations of brain image stored in attribute `labels_img_` .. GENERATED FROM PYTHON SOURCE LINES 227-237 .. code-block:: default hkmeans_labels_img = hkmeans.labels_img_ plotting.plot_roi(hkmeans_labels_img, mean_func_img, title="Hierarchical KMeans parcellation", display_mode='xz', cut_coords=display.cut_coords) # kmeans_labels_img is a :class:`nibabel.nifti1.Nifti1Image` object, it can be # saved to file with the following code: hkmeans_labels_img.to_filename('hierarchical_kmeans_parcellation.nii.gz') .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_005.png :alt: plot data driven parcellations :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_005.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 238-247 Compare Hierarchical Kmeans clusters with those from Kmeans ........................................................... To compare those, we'll first count how many voxels are contained in each of the 50 clusters for both algorithms and compare those sizes distribution. Hierarchical KMeans should give clusters closer to average (600 here) than KMeans. First count how many voxels have each label (except 0 which is the background). .. GENERATED FROM PYTHON SOURCE LINES 247-260 .. code-block:: default kmeans_labels, kmeans_counts = np.unique( get_data(kmeans_labels_img), return_counts=True) _, hkmeans_counts = np.unique( get_data(hkmeans_labels_img), return_counts=True) voxel_ratio = np.round(np.sum(kmeans_counts[1:]) / 50) # If all voxels not in background were balanced between clusters ... print("... each cluster should contain {} voxels".format(voxel_ratio)) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none ... each cluster should contain 485.0 voxels .. GENERATED FROM PYTHON SOURCE LINES 261-264 Let's plot clusters sizes distributions for both algorithms You can just skip the plotting code, the important part is the figure .. GENERATED FROM PYTHON SOURCE LINES 264-284 .. code-block:: default bins = np.concatenate([np.linspace(0, 500, 11), np.linspace( 600, 2000, 15), np.linspace(3000, 10000, 8)]) fig, axes = plt.subplots(nrows=2, sharex=True, gridspec_kw={ 'height_ratios': [4, 1]}) plt.semilogx() axes[0].hist(kmeans_counts[1:], bins, color="blue") axes[1].hist(hkmeans_counts[1:], bins, color="green") axes[0].set_ylim(0, 16) axes[1].set_ylim(4, 0) axes[1].xaxis.set_major_formatter(ticker.ScalarFormatter()) axes[1].yaxis.set_label_coords(-.08, 2) fig.subplots_adjust(hspace=0) plt.xlabel("Number of voxels (log)", fontsize=12) plt.ylabel("Number of clusters", fontsize=12) handles = [patches.Rectangle((0, 0), 1, 1, color=c, ec="k") for c in ["blue", "green"]] labels = ["Kmeans", "Hierarchical Kmeans"] fig.legend(handles, labels, loc=(.5, .8)) .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_006.png :alt: plot data driven parcellations :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_006.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 285-290 As we can see, half of the 50 KMeans clusters contain less than 100 voxels whereas three contain several thousands voxels Hierarchical KMeans yield better balanced clusters, with a significant proportion of them containing hundreds to thousands of voxels. .. GENERATED FROM PYTHON SOURCE LINES 292-310 Brain parcellations with ReNA Clustering ---------------------------------------- One interesting algorithmic property of ReNA (see References) is that it is very fast for a large number of parcels (notably faster than Ward). As before, the parcellation is done with a Parcellations object. The spatial constraints are implemented inside the Parcellations object. References .......... More about ReNA clustering algorithm in the original paper * A. Hoyos-Idrobo, G. Varoquaux, J. Kahn and B. Thirion, "Recursive Nearest Agglomeration (ReNA): Fast Clustering for Approximation of Structured Signals," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 3, pp. 669-681, 1 March 2019. https://hal.archives-ouvertes.fr/hal-01366651/ .. GENERATED FROM PYTHON SOURCE LINES 310-318 .. code-block:: default start = time.time() rena = Parcellations(method='rena', n_parcels=5000, standardize=False, smoothing_fwhm=2., scaling=True, memory='nilearn_cache', memory_level=1, verbose=1) rena.fit_transform(dataset.func) print("ReNA 5000 clusters: %.2fs" % (time.time() - start)) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [MultiNiftiMasker.fit] Loading data from [/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz] [MultiNiftiMasker.fit] Computing mask /home/nicolas/GitRepos/nilearn-fork/nilearn/_utils/cache_mixin.py:304: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1. [MultiNiftiMasker.transform] Resampling mask [Parcellations] Loading data [Parcellations] computing rena ________________________________________________________________________________ [Memory] Calling nilearn.regions.parcellations._estimator_fit... _estimator_fit(array([[-0.005809, ..., -0.000158], ..., [-0.014593, ..., -0.00062 ]]), ReNA(mask_img=, memory=Memory(location=nilearn_cache/joblib), n_clusters=5000, scaling=True), 'rena') ________________________________________________________________________________ [Memory] Calling nilearn.regions.rena_clustering.recursive_neighbor_agglomeration... recursive_neighbor_agglomeration(array([[-0.005809, ..., -0.000158], ..., [-0.014593, ..., -0.00062 ]]), , 5000, n_iter=10, threshold=1e-07, verbose=0) _________________________________recursive_neighbor_agglomeration - 0.6s, 0.0min ____________________________________________________estimator_fit - 0.7s, 0.0min [Parcellations.fit_transform] loading data from Nifti1Image( shape=(50, 59, 50), affine=array([[ 4., 0., 0., -96.], [ 0., 4., 0., -132.], [ 0., 0., 4., -78.], [ 0., 0., 0., 1.]]) ) [Parcellations.fit_transform] loading data from Nifti1Image( shape=(50, 59, 50), affine=array([[ 4., 0., 0., -96.], [ 0., 4., 0., -132.], [ 0., 0., 4., -78.], [ 0., 0., 0., 1.]]) ) ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract(, , { 'background_label': 0, 'detrend': False, 'dtype': None, 'high_pass': None, 'high_variance_confounds': False, 'labels': None, 'labels_img': , 'low_pass': None, 'mask_img': , 'reports': True, 'smoothing_fwhm': 2.0, 'standardize': False, 'standardize_confounds': True, 'strategy': 'mean', 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=None, sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=1) [NiftiLabelsMasker.transform_single_imgs] Loading data from Nifti1Image('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') [NiftiLabelsMasker.transform_single_imgs] Smoothing images [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 2.1s, 0.0min ReNA 5000 clusters: 6.97s .. GENERATED FROM PYTHON SOURCE LINES 319-324 Visualize: Brain parcellations (ReNA) ..................................... First, we display the parcellations of the brain image stored in attribute `labels_img_` .. GENERATED FROM PYTHON SOURCE LINES 324-333 .. code-block:: default rena_labels_img = rena.labels_img_ # Now, rena_labels_img are Nifti1Image object, it can be saved to file # with the following code: rena_labels_img.to_filename('rena_parcellation.nii.gz') plotting.plot_roi(ward_labels_img, title="ReNA parcellation", display_mode='xz', cut_coords=cut_coords) .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_007.png :alt: plot data driven parcellations :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_007.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 334-343 Compressed representation of ReNA clustering ............................................ We illustrate the effect that the clustering has on the signal. We show the original data, and the approximation provided by the clustering by averaging the signal on each parcel. We can then compare the results with the compressed representation obtained with Ward. .. GENERATED FROM PYTHON SOURCE LINES 343-364 .. code-block:: default # Display the original data plotting.plot_epi(mean_func_img, cut_coords=cut_coords, title='Original (%i voxels)' % original_voxels, vmax=vmax, vmin=vmin, display_mode='xz') # A reduced data can be created by taking the parcel-level average: # Note that, as many scikit-learn objects, the ReNA object exposes # a transform method that modifies input features. Here it reduces their # dimension. # However, the data are in one single large 4D image, we need to use # index_img to do the split easily: fmri_reduced_rena = rena.transform(dataset.func) # Display the corresponding data compression using the parcellation compressed_img_rena = rena.inverse_transform(fmri_reduced_rena) plotting.plot_epi(index_img(compressed_img_rena, 0), cut_coords=cut_coords, title='ReNA compressed representation (5000 parcels)', vmin=vmin, vmax=vmax, display_mode='xz') .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_008.png :alt: plot data driven parcellations :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_008.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_009.png :alt: plot data driven parcellations :srcset: /auto_examples/03_connectivity/images/sphx_glr_plot_data_driven_parcellations_009.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [Parcellations.transform] loading data from Nifti1Image('rena_parcellation.nii.gz') [Parcellations.transform] loading data from Nifti1Image( shape=(50, 59, 50), affine=array([[ 4., 0., 0., -96.], [ 0., 4., 0., -132.], [ 0., 0., 4., -78.], [ 0., 0., 0., 1.]]) ) ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract(, , { 'background_label': 0, 'detrend': False, 'dtype': None, 'high_pass': None, 'high_variance_confounds': False, 'labels': None, 'labels_img': , 'low_pass': None, 'mask_img': , 'reports': True, 'smoothing_fwhm': 2.0, 'standardize': False, 'standardize_confounds': True, 'strategy': 'mean', 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=None, sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=1) [NiftiLabelsMasker.transform_single_imgs] Loading data from Nifti1Image('/home/nicolas/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') [NiftiLabelsMasker.transform_single_imgs] Smoothing images [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 2.1s, 0.0min .. GENERATED FROM PYTHON SOURCE LINES 365-371 Even if the compressed signal is relatively close to the original signal, we can notice that Ward Clustering gives a slightly more accurate compressed representation. However, as said in the previous section, the computation time is reduced which could still make ReNA more relevant than Ward in some cases. .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 2.286 seconds) **Estimated memory usage:** 2078 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_data_driven_parcellations.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/03_connectivity/plot_data_driven_parcellations.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_data_driven_parcellations.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_data_driven_parcellations.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_