.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/02_decoding/plot_haxby_searchlight_surface.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_02_decoding_plot_haxby_searchlight_surface.py: Cortical surface-based searchlight decoding =========================================== This is a demo for surface-based searchlight decoding, as described in: Chen, Y., Namburi, P., Elliott, L.T., Heinzle, J., Soon, C.S., Chee, M.W.L., and Haynes, J.-D. (2011). Cortical surface-based searchlight decoding. NeuroImage 56, 582–592. .. GENERATED FROM PYTHON SOURCE LINES 13-15 Load Haxby dataset ------------------- .. GENERATED FROM PYTHON SOURCE LINES 15-26 .. code-block:: default import pandas as pd from nilearn import datasets # We fetch 2nd subject from haxby datasets (which is default) haxby_dataset = datasets.fetch_haxby() fmri_filename = haxby_dataset.func[0] labels = pd.read_csv(haxby_dataset.session_target[0], sep=" ") y = labels['labels'] session = labels['chunks'] .. GENERATED FROM PYTHON SOURCE LINES 27-29 Restrict to faces and houses ------------------------------ .. GENERATED FROM PYTHON SOURCE LINES 29-35 .. code-block:: default from nilearn.image import index_img condition_mask = y.isin(['face', 'house']) fmri_img = index_img(fmri_filename, condition_mask) y, session = y[condition_mask], session[condition_mask] .. GENERATED FROM PYTHON SOURCE LINES 36-38 Surface bold response ---------------------- .. GENERATED FROM PYTHON SOURCE LINES 38-60 .. code-block:: default from nilearn import datasets, surface from sklearn import neighbors # Fetch a coarse surface of the left hemisphere only for speed fsaverage = datasets.fetch_surf_fsaverage(mesh='fsaverage5') hemi = 'left' # Average voxels 5 mm close to the 3d pial surface radius = 5. pial_mesh = fsaverage['pial_' + hemi] X = surface.vol_to_surf(fmri_img, pial_mesh, radius=radius).T # To define the :term:`BOLD` responses to be included within each searchlight "sphere" # we define an adjacency matrix based on the inflated surface vertices such # that nearby surfaces are concatenated within the same searchlight. infl_mesh = fsaverage['infl_' + hemi] coords, _ = surface.load_surf_mesh(infl_mesh) radius = 3. nn = neighbors.NearestNeighbors(radius=radius) adjacency = nn.fit(coords).radius_neighbors_graph(coords).tolil() .. GENERATED FROM PYTHON SOURCE LINES 61-63 Searchlight computation ----------------------- .. GENERATED FROM PYTHON SOURCE LINES 63-79 .. code-block:: default from sklearn.model_selection import KFold from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import RidgeClassifier from nilearn.decoding.searchlight import search_light # Simple linear estimator preceded by a normalization step estimator = make_pipeline(StandardScaler(), RidgeClassifier(alpha=10.)) # Define cross-validation scheme cv = KFold(n_splits=3, shuffle=False) # Cross-validated search light scores = search_light(X, y, estimator, adjacency, cv=cv, n_jobs=1) .. GENERATED FROM PYTHON SOURCE LINES 80-82 Visualization ------------- .. GENERATED FROM PYTHON SOURCE LINES 82-89 .. code-block:: default from nilearn import plotting chance = .5 plotting.plot_surf_stat_map(infl_mesh, scores - chance, view='medial', colorbar=True, threshold=0.1, bg_map=fsaverage['sulc_' + hemi], title='Accuracy map, left hemisphere') plotting.show() .. image-sg:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_searchlight_surface_001.png :alt: Accuracy map, left hemisphere :srcset: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_searchlight_surface_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 21.307 seconds) **Estimated memory usage:** 916 MB .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_searchlight_surface.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/02_decoding/plot_haxby_searchlight_surface.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_haxby_searchlight_surface.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_haxby_searchlight_surface.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_