.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/01_plotting/plot_visualize_megatrawls_netmats.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_visualize_megatrawls_netmats.py: Visualizing Megatrawls Network Matrices from Human Connectome Project ===================================================================== This example shows how to fetch network matrices data from HCP beta-release of the Functional Connectivity Megatrawl project. See :func:`nilearn.datasets.fetch_megatrawls_netmats` documentation for more details. .. GENERATED FROM PYTHON SOURCE LINES 11-15 Fetching the Megatrawls Network matrices ---------------------------------------- Fetching the partial correlation matrices of dimensionality d=300 with timeseries method 'eigen regression' .. GENERATED FROM PYTHON SOURCE LINES 15-24 .. code-block:: default from nilearn import datasets netmats = datasets.fetch_megatrawls_netmats(dimensionality=300, timeseries='eigen_regression', matrices='partial_correlation') # Partial correlation matrices array of size (300, 300) are stored in the name # of 'correlation_matrices' partial_correlation = netmats.correlation_matrices .. GENERATED FROM PYTHON SOURCE LINES 25-29 Visualization ------------- Import nilearn plotting modules to use its utilities for plotting correlation matrices .. GENERATED FROM PYTHON SOURCE LINES 29-35 .. code-block:: default from nilearn import plotting title = "Partial correlation matrices\n for d=300" display = plotting.plot_matrix(partial_correlation, colorbar=True, title=title) plotting.show() .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_visualize_megatrawls_netmats_001.png :alt: plot visualize megatrawls netmats :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_visualize_megatrawls_netmats_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.395 seconds) **Estimated memory usage:** 9 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_visualize_megatrawls_netmats.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/01_plotting/plot_visualize_megatrawls_netmats.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_visualize_megatrawls_netmats.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_visualize_megatrawls_netmats.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_