.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/01_plotting/plot_surface_projection_strategies.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_surface_projection_strategies.py: Technical point: Illustration of the volume to surface sampling schemes ======================================================================= In nilearn, :func:`nilearn.surface.vol_to_surf` allows us to measure values of a 3d volume at the nodes of a cortical mesh, transforming it into surface data. This data can then be plotted with :func:`nilearn.plotting.plot_surf_stat_map` for example. This script shows, on a toy example, where samples are drawn around each mesh vertex. Image values are interpolated at each sample location, then these samples are averaged to produce a value for the vertex. Three strategies are available to choose sample locations: they can be spread between corresponding nodes when we have two nested surfaces (e.g. a white matter and a pial surface), along the normal at each node, or inside a ball around each node. Don't worry too much about choosing one or the other: they take a similar amount of time and give almost identical results for most images. If you do have both pial and white matter surfaces (as for the fsaverage and fsaverage5 surfaces fetched by `nilearn.datasets`) we recommend passing both to `vol_to_surf`. .. GENERATED FROM PYTHON SOURCE LINES 23-33 .. code-block:: default import numpy as np import matplotlib from matplotlib import pyplot as plt from nilearn.surface import surface from nilearn.plotting import show .. GENERATED FROM PYTHON SOURCE LINES 34-36 Build a mesh (of a cylinder) ##################################################################### .. GENERATED FROM PYTHON SOURCE LINES 36-49 .. code-block:: default N_Z = 5 N_T = 10 u, v = np.mgrid[:N_T, :N_Z] triangulation = matplotlib.tri.Triangulation(u.flatten(), v.flatten()) angles = u.flatten() * 2 * np.pi / N_T x, y = np.cos(angles), np.sin(angles) z = v.flatten() * 2 / N_Z mesh = [np.asarray([x, y, z]).T, triangulation.triangles] inner_mesh = [[.7, .7, 1.] * mesh[0], triangulation.triangles] .. GENERATED FROM PYTHON SOURCE LINES 50-52 Get the locations from which vol_to_surf would draw its samples ######################################################################## .. GENERATED FROM PYTHON SOURCE LINES 52-63 .. code-block:: default nested_sample_points = surface._sample_locations_between_surfaces( mesh, inner_mesh, np.eye(4)) line_sample_points = surface._line_sample_locations( mesh, np.eye(4), segment_half_width=.2, n_points=6) ball_sample_points = surface._ball_sample_locations( mesh, np.eye(4), ball_radius=.15, n_points=20) .. GENERATED FROM PYTHON SOURCE LINES 64-66 Plot the mesh and the sample locations ##################################################################### .. GENERATED FROM PYTHON SOURCE LINES 66-81 .. code-block:: default fig = plt.figure() ax = plt.subplot(projection='3d') ax.view_init(67, -42) ax.plot_trisurf(x, y, z, triangles=triangulation.triangles, alpha=.6) ax.plot_trisurf(*inner_mesh[0].T, triangles=triangulation.triangles) ax.scatter(*nested_sample_points.T, color='r') for sample_points in [line_sample_points, ball_sample_points]: fig = plt.figure() ax = plt.subplot(projection='3d') ax.view_init(67, -42) ax.plot_trisurf(x, y, z, triangles=triangulation.triangles) ax.scatter(*sample_points.T, color='r') .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_surface_projection_strategies_001.png :alt: plot surface projection strategies :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_surface_projection_strategies_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_surface_projection_strategies_002.png :alt: plot surface projection strategies :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_surface_projection_strategies_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_surface_projection_strategies_003.png :alt: plot surface projection strategies :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_surface_projection_strategies_003.png :class: sphx-glr-multi-img .. GENERATED FROM PYTHON SOURCE LINES 82-86 Adjust the sample locations ##################################################################### For "line" and nested surfaces, the depth parameter allows adjusting the position of samples along the line .. GENERATED FROM PYTHON SOURCE LINES 86-97 .. code-block:: default nested_sample_points = surface._sample_locations_between_surfaces( mesh, inner_mesh, np.eye(4), depth=[-.5, 0., .8, 1., 1.2]) fig = plt.figure() ax = plt.subplot(projection='3d') ax.view_init(67, -42) ax.plot_trisurf(x, y, z, triangles=triangulation.triangles, alpha=.6) ax.plot_trisurf(*inner_mesh[0].T, triangles=triangulation.triangles) ax.scatter(*nested_sample_points.T, color='r') show() .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_surface_projection_strategies_004.png :alt: plot surface projection strategies :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_surface_projection_strategies_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.819 seconds) **Estimated memory usage:** 10 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_surface_projection_strategies.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/01_plotting/plot_surface_projection_strategies.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_surface_projection_strategies.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_surface_projection_strategies.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_