.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/01_plotting/plot_surf_stat_map.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_surf_stat_map.py: Seed-based connectivity on the surface ======================================= The dataset that is a subset of the enhanced NKI Rockland sample (http://fcon_1000.projects.nitrc.org/indi/enhanced/, Nooner et al, 2012) Resting state fMRI scans (TR=645ms) of 102 subjects were preprocessed (https://github.com/fliem/nki_nilearn) and projected onto the Freesurfer fsaverage5 template (Dale et al, 1999, Fischl et al, 1999). For this example we use the time series of a single subject's left hemisphere. The Destrieux parcellation (Destrieux et al, 2010) in fsaverage5 space as distributed with Freesurfer is used to select a seed region in the posterior cingulate cortex. Functional connectivity of the seed region to all other cortical nodes in the same hemisphere is calculated using Pearson product-moment correlation coefficient. The :func:`nilearn.plotting.plot_surf_stat_map` function is used to plot the resulting statistical map on the (inflated) pial surface. See also :ref:`for a similar example but using volumetric input data `. See :ref:`plotting` for more details on plotting tools. References ---------- Nooner et al, (2012). The NKI-Rockland Sample: A model for accelerating the pace of discovery science in psychiatry. Frontiers in neuroscience 6, 152. URL http://dx.doi.org/10.3389/fnins.2012.00152 Dale et al, (1999). Cortical surface-based analysis.I. Segmentation and surface reconstruction. Neuroimage 9. URL http://dx.doi.org/10.1006/nimg.1998.0395 Fischl et al, (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9. http://dx.doi.org/10.1006/nimg.1998.0396 Destrieux et al, (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53, 1. URL http://dx.doi.org/10.1016/j.neuroimage.2010.06.010. .. GENERATED FROM PYTHON SOURCE LINES 50-52 Retrieving the data ------------------- .. GENERATED FROM PYTHON SOURCE LINES 52-81 .. code-block:: default # NKI resting state data from nilearn from nilearn import datasets nki_dataset = datasets.fetch_surf_nki_enhanced(n_subjects=1) # The nki dictionary contains file names for the data # of all downloaded subjects. print(('Resting state data of the first subjects on the ' 'fsaverag5 surface left hemisphere is at: %s' % nki_dataset['func_left'][0])) # Destrieux parcellation for left hemisphere in fsaverage5 space destrieux_atlas = datasets.fetch_atlas_surf_destrieux() parcellation = destrieux_atlas['map_left'] labels = destrieux_atlas['labels'] # Fsaverage5 surface template fsaverage = datasets.fetch_surf_fsaverage() # The fsaverage dataset contains file names pointing to # the file locations print('Fsaverage5 pial surface of left hemisphere is at: %s' % fsaverage['pial_left']) print('Fsaverage5 inflated surface of left hemisphere is at: %s' % fsaverage['infl_left']) print('Fsaverage5 sulcal depth map of left hemisphere is at: %s' % fsaverage['sulc_left']) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Resting state data of the first subjects on the fsaverag5 surface left hemisphere is at: /home/nicolas/nilearn_data/nki_enhanced_surface/A00028185/A00028185_left_preprocessed_fwhm6.gii Fsaverage5 pial surface of left hemisphere is at: /home/nicolas/GitRepos/nilearn-fork/nilearn/datasets/data/fsaverage5/pial_left.gii.gz Fsaverage5 inflated surface of left hemisphere is at: /home/nicolas/GitRepos/nilearn-fork/nilearn/datasets/data/fsaverage5/infl_left.gii.gz Fsaverage5 sulcal depth map of left hemisphere is at: /home/nicolas/GitRepos/nilearn-fork/nilearn/datasets/data/fsaverage5/sulc_left.gii.gz .. GENERATED FROM PYTHON SOURCE LINES 82-84 Extracting the seed time series -------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 84-99 .. code-block:: default # Load resting state time series from nilearn from nilearn import surface timeseries = surface.load_surf_data(nki_dataset['func_left'][0]) # Extract seed region via label pcc_region = b'G_cingul-Post-dorsal' import numpy as np pcc_labels = np.where(parcellation == labels.index(pcc_region))[0] # Extract time series from seed region seed_timeseries = np.mean(timeseries[pcc_labels], axis=0) .. GENERATED FROM PYTHON SOURCE LINES 100-102 Calculating seed-based functional connectivity ---------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 102-114 .. code-block:: default # Calculate Pearson product-moment correlation coefficient between seed # time series and timeseries of all cortical nodes of the hemisphere from scipy import stats stat_map = np.zeros(timeseries.shape[0]) for i in range(timeseries.shape[0]): stat_map[i] = stats.pearsonr(seed_timeseries, timeseries[i])[0] # Re-mask previously masked nodes (medial wall) stat_map[np.where(np.mean(timeseries, axis=1) == 0)] = 0 .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/anaconda3/envs/nilearn/lib/python3.8/site-packages/scipy/stats/stats.py:4023: PearsonRConstantInputWarning: An input array is constant; the correlation coefficient is not defined. warnings.warn(PearsonRConstantInputWarning()) .. GENERATED FROM PYTHON SOURCE LINES 115-116 Display ROI on surface .. GENERATED FROM PYTHON SOURCE LINES 116-128 .. code-block:: default # Transform ROI indices in ROI map pcc_map = np.zeros(parcellation.shape[0], dtype=int) pcc_map[pcc_labels] = 1 from nilearn import plotting plotting.plot_surf_roi(fsaverage['pial_left'], roi_map=pcc_map, hemi='left', view='medial', bg_map=fsaverage['sulc_left'], bg_on_data=True, title='PCC Seed') .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_stat_map_001.png :alt: PCC Seed :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_surf_stat_map_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 129-130 Display unthresholded stat map with a slightly dimmed background .. GENERATED FROM PYTHON SOURCE LINES 130-135 .. code-block:: default plotting.plot_surf_stat_map(fsaverage['pial_left'], stat_map=stat_map, hemi='left', view='medial', colorbar=True, bg_map=fsaverage['sulc_left'], bg_on_data=True, darkness=.3, title='Correlation map') .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_stat_map_002.png :alt: Correlation map :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_surf_stat_map_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 136-138 Many different options are available for plotting, for example thresholding, or using custom colormaps .. GENERATED FROM PYTHON SOURCE LINES 138-144 .. code-block:: default plotting.plot_surf_stat_map(fsaverage['pial_left'], stat_map=stat_map, hemi='left', view='medial', colorbar=True, bg_map=fsaverage['sulc_left'], bg_on_data=True, cmap='Spectral', threshold=.5, title='Threshold and colormap') .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_stat_map_003.png :alt: Threshold and colormap :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_surf_stat_map_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 145-150 Here the surface is plotted in a lateral view without a background map. To capture 3D structure without depth information, the default is to plot a half transparent surface. Note that you can also control the transparency with a background map using the alpha parameter. .. GENERATED FROM PYTHON SOURCE LINES 150-155 .. code-block:: default plotting.plot_surf_stat_map(fsaverage['pial_left'], stat_map=stat_map, hemi='left', view='lateral', colorbar=True, cmap='Spectral', threshold=.5, title='Plotting without background') .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_stat_map_004.png :alt: Plotting without background :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_surf_stat_map_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 156-158 The plots can be saved to file, in which case the display is closed after creating the figure .. GENERATED FROM PYTHON SOURCE LINES 158-164 .. code-block:: default plotting.plot_surf_stat_map(fsaverage['infl_left'], stat_map=stat_map, hemi='left', bg_map=fsaverage['sulc_left'], bg_on_data=True, threshold=.5, colorbar=True, output_file='plot_surf_stat_map.png') plotting.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 5.487 seconds) **Estimated memory usage:** 66 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_surf_stat_map.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/01_plotting/plot_surf_stat_map.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_surf_stat_map.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_surf_stat_map.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_