.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/01_plotting/plot_prob_atlas.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_prob_atlas.py: Visualizing 4D probabilistic atlas maps ======================================= This example shows how to visualize probabilistic atlases made of 4D images. There are 3 different display types: 1. "contours", which means maps or ROIs are shown as contours delineated by colored lines. 2. "filled_contours", maps are shown as contours same as above but with fillings inside the contours. 3. "continuous", maps are shown as just color overlays. A colorbar can optionally be added. The :func:`nilearn.plotting.plot_prob_atlas` function displays each map with each different color which are picked randomly from the colormap which is already defined. See :ref:`plotting` for more information to know how to tune the parameters. .. GENERATED FROM PYTHON SOURCE LINES 24-78 .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_001.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_002.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_003.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_003.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_004.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_004.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_005.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_005.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_006.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_006.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_007.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_007.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_008.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_008.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_009.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_009.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_010.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_010.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_011.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_011.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_012.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_012.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_013.png :alt: plot prob atlas :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_prob_atlas_013.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/GitRepos/nilearn-fork/nilearn/plotting/displays/_axes.py:71: UserWarning: No contour levels were found within the data range. im = getattr(ax, type)(data_2d.copy(), /home/nicolas/GitRepos/nilearn-fork/nilearn/plotting/displays/_axes.py:71: UserWarning: No contour levels were found within the data range. im = getattr(ax, type)(data_2d.copy(), /home/nicolas/anaconda3/envs/nilearn/lib/python3.8/site-packages/numpy/ma/core.py:2825: UserWarning: Warning: converting a masked element to nan. _data = np.array(data, dtype=dtype, copy=copy, /home/nicolas/GitRepos/nilearn-fork/nilearn/plotting/displays/_axes.py:71: UserWarning: linewidths is ignored by contourf im = getattr(ax, type)(data_2d.copy(), ready | .. code-block:: default # Load 4D probabilistic atlases from nilearn import datasets # Harvard Oxford Atlasf harvard_oxford = datasets.fetch_atlas_harvard_oxford('cort-prob-2mm') harvard_oxford_sub = datasets.fetch_atlas_harvard_oxford('sub-prob-2mm') # Multi Subject Dictionary Learning Atlas msdl = datasets.fetch_atlas_msdl() # Smith ICA Atlas and Brain Maps 2009 smith = datasets.fetch_atlas_smith_2009() # ICBM tissue probability icbm = datasets.fetch_icbm152_2009() # Allen RSN networks allen = datasets.fetch_atlas_allen_2011() # Pauli subcortical atlas subcortex = datasets.fetch_atlas_pauli_2017() # Dictionaries of Functional Modes (“DiFuMo”) atlas dim = 64 res = 2 difumo = datasets.fetch_atlas_difumo( dimension=dim, resolution_mm=res, legacy_format=False ) # Visualization from nilearn import plotting atlas_types = {'Harvard_Oxford': harvard_oxford.maps, 'Harvard_Oxford sub': harvard_oxford_sub.maps, 'MSDL': msdl.maps, 'Smith 2009 10 RSNs': smith.rsn10, 'Smith2009 20 RSNs': smith.rsn20, 'Smith2009 70 RSNs': smith.rsn70, 'Smith2009 20 Brainmap': smith.bm20, 'Smith2009 70 Brainmap': smith.bm70, 'ICBM tissues': (icbm['wm'], icbm['gm'], icbm['csf']), 'Allen2011': allen.rsn28, 'Pauli2017 Subcortical Atlas': subcortex.maps, 'DiFuMo dimension {0} resolution {1}'.format(dim, res): difumo.maps, } for name, atlas in sorted(atlas_types.items()): plotting.plot_prob_atlas(atlas, title=name) # An optional colorbar can be set plotting.plot_prob_atlas(smith.bm10, title='Smith2009 10 Brainmap (with' ' colorbar)', colorbar=True) print('ready') plotting.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 2 minutes 31.435 seconds) **Estimated memory usage:** 1127 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_prob_atlas.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/01_plotting/plot_prob_atlas.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_prob_atlas.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_prob_atlas.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_