.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/01_plotting/plot_haxby_masks.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_haxby_masks.py: Plot Haxby masks ================= Small script to plot the masks of the Haxby dataset. .. GENERATED FROM PYTHON SOURCE LINES 7-49 .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_haxby_masks_001.png :alt: plot haxby masks :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_haxby_masks_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none First subject anatomical nifti image (3D) is at: /home/nicolas/nilearn_data/haxby2001/subj2/anat.nii.gz First subject functional nifti image (4D) is at: /home/nicolas/nilearn_data/haxby2001/subj2/bold.nii.gz /home/nicolas/GitRepos/nilearn-fork/nilearn/plotting/displays/_axes.py:71: UserWarning: No contour levels were found within the data range. im = getattr(ax, type)(data_2d.copy(), /home/nicolas/GitRepos/nilearn-fork/nilearn/plotting/displays/_axes.py:71: UserWarning: The following kwargs were not used by contour: 'contours' im = getattr(ax, type)(data_2d.copy(), | .. code-block:: default import matplotlib.pyplot as plt from nilearn import datasets haxby_dataset = datasets.fetch_haxby() # print basic information on the dataset print('First subject anatomical nifti image (3D) is at: %s' % haxby_dataset.anat[0]) print('First subject functional nifti image (4D) is at: %s' % haxby_dataset.func[0]) # 4D data # Build the mean image because we have no anatomic data from nilearn import image func_filename = haxby_dataset.func[0] mean_img = image.mean_img(func_filename) z_slice = -14 fig = plt.figure(figsize=(4, 5.4), facecolor='k') from nilearn.plotting import plot_anat, show display = plot_anat(mean_img, display_mode='z', cut_coords=[z_slice], figure=fig) mask_vt_filename = haxby_dataset.mask_vt[0] mask_house_filename = haxby_dataset.mask_house[0] mask_face_filename = haxby_dataset.mask_face[0] display.add_contours(mask_vt_filename, contours=1, antialiased=False, linewidths=4., levels=[0], colors=['red']) display.add_contours(mask_house_filename, contours=1, antialiased=False, linewidths=4., levels=[0], colors=['blue']) display.add_contours(mask_face_filename, contours=1, antialiased=False, linewidths=4., levels=[0], colors=['limegreen']) # We generate a legend using the trick described on # http://matplotlib.sourceforge.net/users/legend_guide.httpml#using-proxy-artist from matplotlib.patches import Rectangle p_v = Rectangle((0, 0), 1, 1, fc="red") p_h = Rectangle((0, 0), 1, 1, fc="blue") p_f = Rectangle((0, 0), 1, 1, fc="limegreen") plt.legend([p_v, p_h, p_f], ["vt", "house", "face"]) show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 4.038 seconds) **Estimated memory usage:** 916 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_haxby_masks.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/01_plotting/plot_haxby_masks.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_haxby_masks.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_haxby_masks.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_