.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/01_plotting/plot_carpet.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_carpet.py: Visualizing global patterns with a carpet plot ============================================== A common quality control step for functional MRI data is to visualize the data over time in a carpet plot (also known as a Power plot or a grayplot). The :func:`nilearn.plotting.plot_carpet()` function generates a carpet plot from a 4D functional image. .. GENERATED FROM PYTHON SOURCE LINES 13-15 Fetching data from ADHD dataset ------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 15-27 .. code-block:: default from nilearn import datasets adhd_dataset = datasets.fetch_adhd(n_subjects=1) # plot_carpet can infer TR from the image header, but preprocessing can often # overwrite that particular header field, so we will be explicit. t_r = 2. # Print basic information on the dataset print('First subject functional nifti image (4D) is at: %s' % adhd_dataset.func[0]) # 4D data .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/GitRepos/nilearn-fork/nilearn/datasets/func.py:250: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default. phenotypic = np.genfromtxt(phenotypic, names=True, delimiter=',', First subject functional nifti image (4D) is at: /home/nicolas/nilearn_data/adhd/data/0010042/0010042_rest_tshift_RPI_voreg_mni.nii.gz .. GENERATED FROM PYTHON SOURCE LINES 28-30 Deriving a mask --------------- .. GENERATED FROM PYTHON SOURCE LINES 30-35 .. code-block:: default from nilearn import masking # Build an EPI-based mask because we have no anatomical data mask_img = masking.compute_epi_mask(adhd_dataset.func[0]) .. GENERATED FROM PYTHON SOURCE LINES 36-38 Visualizing global patterns over time ------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 38-46 .. code-block:: default import matplotlib.pyplot as plt from nilearn.plotting import plot_carpet display = plot_carpet(adhd_dataset.func[0], mask_img, t_r=t_r) display.show() .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_carpet_001.png :alt: plot carpet :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_carpet_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 47-51 Deriving a label-based mask --------------------------- Create a gray matter/white matter/cerebrospinal fluid mask from ICBM152 tissue probability maps. .. GENERATED FROM PYTHON SOURCE LINES 51-68 .. code-block:: default import nibabel as nib import numpy as np from nilearn import image atlas = datasets.fetch_icbm152_2009() atlas_img = image.concat_imgs((atlas["gm"], atlas["wm"], atlas["csf"])) map_labels = {"Gray Matter": 1, "White Matter": 2, "Cerebrospinal Fluid": 3} atlas_data = atlas_img.get_fdata() discrete_version = np.argmax(atlas_data, axis=3) + 1 discrete_version[np.max(atlas_data, axis=3) == 0] = 0 discrete_atlas_img = nib.Nifti1Image( discrete_version, atlas_img.affine, atlas_img.header, ) .. GENERATED FROM PYTHON SOURCE LINES 69-71 Visualizing global patterns, separated by tissue type ----------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 71-86 .. code-block:: default import matplotlib.pyplot as plt from nilearn.plotting import plot_carpet fig, ax = plt.subplots(figsize=(10, 10)) display = plot_carpet( adhd_dataset.func[0], discrete_atlas_img, t_r=t_r, mask_labels=map_labels, axes=ax, ) fig.show() .. image-sg:: /auto_examples/01_plotting/images/sphx_glr_plot_carpet_002.png :alt: plot carpet :srcset: /auto_examples/01_plotting/images/sphx_glr_plot_carpet_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/nicolas/GitRepos/nilearn-fork/nilearn/image/resampling.py:531: UserWarning: Casting data from int32 to float32 warnings.warn("Casting data from %s to %s" % (data.dtype.name, aux)) Coercing atlas_values to .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 9.705 seconds) **Estimated memory usage:** 1019 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_carpet.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/01_plotting/plot_carpet.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_carpet.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_carpet.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_