Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
8.10.17. nilearn.plotting.plot_surf¶
- nilearn.plotting.plot_surf(surf_mesh, surf_map=None, bg_map=None, hemi='left', view='lateral', cmap=None, colorbar=False, avg_method='mean', threshold=None, alpha='auto', bg_on_data=False, darkness=1, vmin=None, vmax=None, cbar_vmin=None, cbar_vmax=None, cbar_tick_format='%.2g', title=None, output_file=None, axes=None, figure=None, **kwargs)[source]¶
Plotting of surfaces with optional background and data
New in version 0.3.
- Parameters
- surf_meshstr or list of two numpy.ndarray or Mesh
Surface mesh geometry, can be a file (valid formats are .gii or Freesurfer specific files such as .orig, .pial, .sphere, .white, .inflated) or a list of two Numpy arrays, the first containing the x-y-z coordinates of the mesh vertices, the second containing the indices (into coords) of the mesh faces, or a Mesh object with “coordinates” and “faces” attributes.
- surf_mapstr or numpy.ndarray, optional
Data to be displayed on the surface mesh. Can be a file (valid formats are .gii, .mgz, .nii, .nii.gz, or Freesurfer specific files such as .thickness, .area, .curv, .sulc, .annot, .label) or a Numpy array with a value for each vertex of the surf_mesh.
- bg_mapSurface data object (to be defined), optional
Background image to be plotted on the mesh underneath the surf_data in greyscale, most likely a sulcal depth map for realistic shading.
- hemi{‘left’, ‘right’}, optional
Hemisphere to display. Default=’left’.
- view{‘lateral’, ‘medial’, ‘dorsal’, ‘ventral’, ‘anterior’, ‘posterior’}, optional
View of the surface that is rendered. Default=’lateral’.
- cmap
matplotlib.colors.Colormap
, orstr
, optional The colormap to use. Either a string which is a name of a matplotlib colormap, or a matplotlib colormap object. If None, matplotlib default will be chosen.
- colorbar
bool
, optional If
True
, display a colorbar on the right of the plots. Default=False.- avg_method{‘mean’, ‘median’, ‘min’, ‘max’, custom function}, optional
How to average vertex values to derive the face value:
mean
: results in smooth boundariesmedian
: results in sharp boundariesmin
ormax
: for sparse matricescustom function
: You can also pass a custom function which will be executed thoughnumpy.apply_along_axis
. Here is an example of a custom function:def custom_function(vertices): return vertices[0] * vertices[1] * vertices[2]
Default=’mean’.
- thresholda number or None, default is None.
If None is given, the image is not thresholded. If a number is given, it is used to threshold the image, values below the threshold (in absolute value) are plotted as transparent.
- alphafloat or ‘auto’, optional
Alpha level of the mesh (not surf_data). If ‘auto’ is chosen, alpha will default to .5 when no bg_map is passed and to 1 if a bg_map is passed. Default=’auto’.
- bg_on_data
bool
, optional If
True
, and abg_map
is specified, thesurf_data
data is multiplied by the background image, so that e.g. sulcal depth is visible beneath thesurf_data
.Note
This non-uniformly changes the surf_data values according to e.g the sulcal depth.
Default=False.
- darkness
float
between 0 and 1, optional Specifying the darkness of the background image:
‘1’ indicates that the original values of the background are used
‘.5’ indicates that the background values are reduced by half before being applied.
Default=1.
- vmin
float
, optional Lower bound of the colormap. If
None
, the min of the image is used. Passed tomatplotlib.pyplot.imshow
.- vmax
float
, optional Upper bound of the colormap. If
None
, the max of the image is used. Passed tomatplotlib.pyplot.imshow
.- cbar_vmin, cbar_vmaxfloat, float, optional
Lower / upper bounds for the colorbar. If None, the values will be set from the data. Default values are None.
- cbar_tick_format
str
, optional Controls how to format the tick labels of the colorbar. Ex: use “%%.2g” to display using scientific notation. Default=’%.2g’ for scientific notation.
- title
str
, or None, optional The title displayed on the figure. Default=None.
- output_file
str
, or None, optional The name of an image file to export the plot to. Valid extensions are .png, .pdf, .svg. If
output_file
is not None, the plot is saved to a file, and the display is closed.- axesinstance of matplotlib axes, None, optional
The axes instance to plot to. The projection must be ‘3d’ (e.g., figure, axes = plt.subplots(subplot_kw={‘projection’: ‘3d’}), where axes should be passed.). If None, a new axes is created.
- figure
int
, ormatplotlib.figure.Figure
, or None, optional Matplotlib figure used or its number. If
None
is given, a new figure is created.
See also
nilearn.datasets.fetch_surf_fsaverage
For surface data object to be used as background map for this plotting function.
nilearn.plotting.plot_surf_roi
For plotting statistical maps on brain surfaces.
nilearn.plotting.plot_surf_stat_map
for plotting statistical maps on brain surfaces.
nilearn.surface.vol_to_surf
For info on the generation of surfaces.