Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
8.5.19. nilearn.image.smooth_img¶
- nilearn.image.smooth_img(imgs, fwhm)[source]¶
- Smooth images by applying a Gaussian filter. - Apply a Gaussian filter along the three first dimensions of arr. In all cases, non-finite values in input image are replaced by zeros. - Parameters
- imgsNiimg-like object or iterable of Niimg-like objects
- Image(s) to smooth (see http://nilearn.github.io/manipulating_images/input_output.html for a detailed description of the valid input types). 
- fwhmscalar, numpy.ndarray, ‘fast’ or None
- Smoothing strength, as a Full-Width at Half Maximum (FWHM), in millimeters. If a scalar is given, width is identical on all three directions. A - numpy.ndarraymust have 3 elements, giving the FWHM along each axis. If fwhm=’fast’, a fast smoothing will be performed with a filter [0.2, 1, 0.2] in each direction and a normalisation to preserve the scale. If fwhm is None, no filtering is performed (useful when just removal of non-finite values is needed).- In corner case situations, fwhm is simply kept to None when fwhm is specified as fwhm=0. 
 
- Returns
- nibabel.nifti1.Nifti1Imageor list of
- Filtered input image. If imgs is an iterable, then filtered_img is a list. 
 
 
 
 



