Note

This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

8.5.9. nilearn.image.index_img

nilearn.image.index_img(imgs, index)[source]

Indexes into a 4D Niimg-like object in the fourth dimension.

Common use cases include extracting a 3D image out of img or creating a 4D image whose data is a subset of img data.

Parameters
imgs4D Niimg-like object

See http://nilearn.github.io/manipulating_images/input_output.html.

indexAny type compatible with numpy array indexing

Used for indexing the 4D data array in the fourth dimension.

Returns
Nifti1Image

Indexed image.

Examples

First we concatenate two MNI152 images to create a 4D-image:

>>> from nilearn import datasets
>>> from nilearn.image import concat_imgs, index_img
>>> joint_mni_image = concat_imgs([datasets.load_mni152_template(),
...                                datasets.load_mni152_template()])
>>> print(joint_mni_image.shape)
(99, 117, 95, 2)

We can now select one slice from the last dimension of this 4D-image:

>>> single_mni_image = index_img(joint_mni_image, 1)
>>> print(single_mni_image.shape)
(99, 117, 95)

We can also select multiple frames using the slice constructor:

>>> five_mni_images = concat_imgs([datasets.load_mni152_template()] * 5)
>>> print(five_mni_images.shape)
(99, 117, 95, 5)

>>> first_three_images = index_img(five_mni_images,
...                                slice(0, 3))
>>> print(first_three_images.shape)
(99, 117, 95, 3)