Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
8.12.13. nilearn.glm.cluster_level_inference¶
- nilearn.glm.cluster_level_inference(stat_img, mask_img=None, threshold=3.0, alpha=0.05, verbose=False)[source]¶
Report the proportion of active voxels for all clusters defined by the input threshold.
This implements the method described in [1].
- Parameters
- stat_imgNiimg-like object or None, optional
statistical image (presumably in z scale)
- mask_imgNiimg-like object, optional,
mask image
- thresholdlist of floats, optional
Cluster-forming threshold in z-scale. Default=3.0.
- alphafloat or list, optional
Level of control on the true positive rate, aka true dsicovery proportion. Default=0.05.
- verbosebool, optional
Verbosity mode. Default=False.
- Returns
- proportion_true_discoveries_imgNifti1Image
The statistical map that gives the true positive.
Notes
This function is experimental. It may change in any future release of Nilearn.
References
- 1
Rosenblatt JD, Finos L, Weeda WD, Solari A, Goeman JJ. All-Resolutions Inference for brain imaging. Neuroimage. 2018 Nov 1;181:786-796. doi: 10.1016/j.neuroimage.2018.07.060