Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
8.2.6. nilearn.datasets.fetch_atlas_difumo¶
- nilearn.datasets.fetch_atlas_difumo(dimension=64, resolution_mm=2, data_dir=None, resume=True, verbose=1)[source]¶
Fetch DiFuMo brain atlas
Dictionaries of Functional Modes, or “DiFuMo”, can serve as atlases to extract functional signals with different dimensionalities (64, 128, 256, 512, and 1024). These modes are optimized to represent well raw BOLD timeseries, over a with range of experimental conditions. See 1.
New in version 0.7.1.
- Parameters
- dimensionint, optional
Number of dimensions in the dictionary. Valid resolutions available are {64, 128, 256, 512, 1024}. Default=64.
- resolution_mmint, optional
The resolution in mm of the atlas to fetch. Valid options available are {2, 3}. Default=2mm.
- data_dir
pathlib.Path
orstr
, optional Path where data should be downloaded. By default, files are downloaded in home directory.
- resume
bool
, optional Whether to resume download of a partly-downloaded file. Default=True.
- verbose
int
, optional Verbosity level (0 means no message). Default=1.
- Returns
- datasklearn.datasets.base.Bunch
Dictionary-like object, the interest attributes are :
‘maps’: str, 4D path to nifti file containing regions definition.
‘labels’: Numpy recarray containing the labels of the regions.
‘description’: str, general description of the dataset.
Notes
Direct download links from OSF:
References
- 1
Kamalaker Dadi, Gaël Varoquaux, Antonia Machlouzarides-Shalit, Krzysztof J. Gorgolewski, Demian Wassermann, Bertrand Thirion, and Arthur Mensch. Fine-grain atlases of functional modes for fmri analysis. NeuroImage, 221:117126, 2020. URL: https://www.sciencedirect.com/science/article/pii/S1053811920306121, doi:https://doi.org/10.1016/j.neuroimage.2020.117126.