.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_02_decoding_plot_haxby_glm_decoding.py:
Decoding of a dataset after GLM fit for signal extraction
=========================================================
Full step-by-step example of fitting a GLM to perform a decoding experiment.
We use the data from one subject of the Haxby dataset.
More specifically:
1. Download the Haxby dataset.
2. Extract the information to generate a glm representing the blocks of stimuli.
3. Analyze the decoding performance using a classifier.
To run this example, you must launch IPython via ``ipython
--matplotlib`` in a terminal, or use the Jupyter notebook.
.. contents:: **Contents**
:local:
:depth: 1
Fetch example Haxby dataset
----------------------------
We download the Haxby dataset
This is a study of visual object category representation
.. code-block:: default
# By default 2nd subject will be fetched
import numpy as np
import pandas as pd
from nilearn import datasets
haxby_dataset = datasets.fetch_haxby()
# repetition has to be known
TR = 2.5
Load the behavioral data
-------------------------
.. code-block:: default
# Load target information as string and give a numerical identifier to each
behavioral = pd.read_csv(haxby_dataset.session_target[0], sep=' ')
conditions = behavioral['labels'].values
# Record these as an array of sessions
sessions = behavioral['chunks'].values
unique_sessions = behavioral['chunks'].unique()
# fMRI data: a unique file for each session
func_filename = haxby_dataset.func[0]
Build a proper event structure for each session
------------------------------------------------
.. code-block:: default
events = {}
# events will take the form of a dictionary of Dataframes, one per session
for session in unique_sessions:
# get the condition label per session
conditions_session = conditions[sessions == session]
# get the number of scans per session, then the corresponding
# vector of frame times
n_scans = len(conditions_session)
frame_times = TR * np.arange(n_scans)
# each event last the full TR
duration = TR * np.ones(n_scans)
# Define the events object
events_ = pd.DataFrame(
{'onset': frame_times, 'trial_type': conditions_session, 'duration': duration})
# remove the rest condition and insert into the dictionary
events[session] = events_[events_.trial_type != 'rest']
Instantiate and run FirstLevelModel
------------------------------------
We generate a list of z-maps together with their session and condition index
.. code-block:: default
z_maps = []
conditions_label = []
session_label = []
# Instantiate the glm
from nilearn.glm.first_level import FirstLevelModel
glm = FirstLevelModel(t_r=TR,
mask_img=haxby_dataset.mask,
high_pass=.008,
smoothing_fwhm=4,
memory='nilearn_cache')
Run the glm on data from each session
--------------------------------------
.. code-block:: default
events[session].trial_type.unique()
from nilearn.image import index_img
for session in unique_sessions:
# grab the fmri data for that particular session
fmri_session = index_img(func_filename, sessions == session)
# fit the glm
glm.fit(fmri_session, events=events[session])
# set up contrasts: one per condition
conditions = events[session].trial_type.unique()
for condition_ in conditions:
z_maps.append(glm.compute_contrast(condition_))
conditions_label.append(condition_)
session_label.append(session)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.114769, ..., -2.149296],
...,
[ 2.367151, ..., 0.779998]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.256013, ..., 0.308334]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.038572, ..., 0.855077]), )
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.070285, ..., -1.222001]), )
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.1724 , ..., 0.033508]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.96724 , ..., -1.474856]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.432136, ..., -1.197805]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.420626, ..., -0.443207]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.310409, ..., 0.196496]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 12.660587, ..., -13.536042],
...,
[ -3.254408, ..., -33.842804]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.705774, ..., -0.934083]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.476069, ..., -1.29404 ]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.210752, ..., -1.441079]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.341707, ..., 2.094528]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.097247, ..., -0.496306]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.118812, ..., 1.58503 ]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.801345, ..., -1.648133]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.621172, ..., -0.678871]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 5.205584, ..., 26.587189],
...,
[-6.836576, ..., 10.676956]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.733742, ..., -0.435687]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.502666, ..., 1.789333]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.690828, ..., 0.731519]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.403789, ..., 0.257657]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.472767, ..., -1.160892]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.07507 , ..., -2.203006]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.445359, ..., -0.36161 ]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.034083, ..., 0.35299 ]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-2.026206, ..., 5.974948],
...,
[ 2.616334, ..., 0.104535]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.596132, ..., -1.910225]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.217544, ..., -0.003551]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.337751, ..., 0.789979]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.161412, ..., -0.265537]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.538844, ..., -0.797649]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.589617, ..., -0.790328]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.306331, ..., -0.003053]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.20477 , ..., -0.804061]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 53.033577, ..., -55.45955 ],
...,
[-51.57195 , ..., -55.994713]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.161983, ..., -0.068078]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.467058, ..., -0.494102]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.008358, ..., 0.250096]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.127065, ..., -0.241985]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.066426, ..., 0.493324]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.049242, ..., -1.008997]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.336253, ..., -0.596381]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.707037, ..., 1.358865]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-27.150482, ..., -5.81308 ],
...,
[-30.204891, ..., 7.417917]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.197916, ..., 1.581644]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.576467, ..., 0.392603]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.969252, ..., 1.15444 ]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.716041, ..., 1.094486]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.280537, ..., 0.542739]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.331329, ..., -0.019244]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.298501, ..., -0.355821]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.232015, ..., -0.420629]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[129.51173 , ..., -15.279282],
...,
[-18.911755, ..., 21.839058]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.490124, ..., -0.665442]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.374685, ..., -0.980248]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.654133, ..., -0.288692]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.244312, ..., -1.462072]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.665202, ..., 1.793466]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.036326, ..., 0.693956]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.672634, ..., -0.24818 ]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.099764, ..., -1.722951]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-15.915996, ..., 22.07737 ],
...,
[-16.981215, ..., 3.372383]], dtype=float32),
array([[ 0. , ..., 1. ],
...,
[-0.259023, ..., 1. ]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.033872, ..., -0.317176]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.98478 , ..., -0.770334]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.127461, ..., 0.929068]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.489347, ..., -0.230229]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.673052, ..., 0.6757 ]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.260282, ..., -0.346342]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.775541, ..., 1.603123]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([3.391727, ..., 0.653312]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.292987, ..., 18.392956],
...,
[-3.935719, ..., 0.602484]], dtype=float32),
array([[ 0. , ..., 1. ],
...,
[-0.259023, ..., 1. ]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.620911, ..., 2.309993]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.44548 , ..., 0.576334]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.483355, ..., -0.068969]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.166576, ..., 0.713549]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.612744, ..., 1.441012]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.254934, ..., -1.288018]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.134169, ..., -0.621367]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.234171, ..., -1.497943]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-5.223948, ..., -5.959582],
...,
[-7.677519, ..., 16.024363]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.01344 , ..., 1.283233]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.79114 , ..., 1.031069]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.583575, ..., 0.488828]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.265741, ..., -0.623721]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.20672, ..., 1.09668]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.045178, ..., 0.822339]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.463833, ..., -0.151504]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.230311, ..., 0.198537]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-19.66533 , ..., -6.299562],
...,
[-24.647343, ..., 2.331865]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.080165, ..., -3.497239]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-3.083184, ..., -3.071235]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.724401, ..., -2.892927]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.044506, ..., 0.285176]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.257372, ..., 1.802962]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.485481, ..., 0.284696]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.032135, ..., -1.290339]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.417132, ..., -1.258094]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(, , { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-1.095605, ..., 16.449202],
...,
[ 2.59974 , ..., -2.179998]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.545625, ..., -1.041515]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.152042, ..., 1.145641]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.55236 , ..., 0.696758]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.684509, ..., 0.226524]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.423531, ..., -0.641954]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.726779, ..., 0.687642]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.809306, ..., 0.496974]), )
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.116436, ..., -0.811166]), )
___________________________________________________________unmask - 0.1s, 0.0min
Generating a report
--------------------
Since we have already computed the FirstLevelModel
and have the contrast, we can quickly create a summary report.
.. code-block:: default
from nilearn.image import mean_img
from nilearn.reporting import make_glm_report
mean_img_ = mean_img(func_filename)
report = make_glm_report(glm,
contrasts=conditions,
bg_img=mean_img_,
)
report # This report can be viewed in a notebook
.. raw:: html
Statistical Report for bottle, cat, chair, face, house, scissors, scrambledpix, shoe
First Level Model
Model details:
drift_model |
cosine |
drift_order |
1 |
fir_delays |
[0] |
high_pass (Hz) |
0.008 |
hrf_model |
glover |
noise_model |
ar1 |
scaling_axis |
0 |
signal_scaling |
True |
slice_time_ref |
0 |
smoothing_fwhm |
4 |
standardize |
False |
subject_label |
None |
t_r (s) |
2.5 |
target_affine |
None |
target_shape |
None |
Design Matrix:
Contrasts
Mask
Stat Maps with Cluster Tables
bottle
Contrast Plot
Cluster Table
Height control |
fpr |
α |
0.001 |
Threshold (computed) |
3.3 |
Cluster size threshold (voxels) |
0 |
Minimum distance (mm) |
8 |
Cluster ID |
X |
Y |
Z |
Peak Stat |
Cluster Size (mm3) |
1 |
-36.75 |
-46.88 |
-46.88 |
6.61 |
147 |
2 |
-54.25 |
13.12 |
5.62 |
6.47 |
98 |
3 |
-1.75 |
-39.38 |
13.12 |
6.45 |
196 |
4 |
-57.75 |
-39.38 |
9.38 |
6.17 |
246 |
5 |
-40.25 |
-35.62 |
-35.62 |
6.12 |
393 |
6 |
33.25 |
-43.12 |
-43.12 |
6.11 |
1722 |
6a |
22.75 |
-35.62 |
-43.12 |
5.78 |
|
6b |
15.75 |
-46.88 |
-39.38 |
4.33 |
|
6c |
12.25 |
-46.88 |
-46.88 |
4.11 |
|
7 |
-19.25 |
-24.38 |
-43.12 |
5.99 |
492 |
7a |
-19.25 |
-31.88 |
-39.38 |
5.47 |
|
8 |
29.75 |
-20.62 |
-24.38 |
5.98 |
393 |
9 |
-43.75 |
28.12 |
-9.38 |
5.96 |
196 |
10 |
8.75 |
-50.62 |
-35.62 |
5.88 |
492 |
11 |
19.25 |
-54.38 |
-43.12 |
5.78 |
1476 |
11a |
12.25 |
-58.12 |
-28.12 |
5.44 |
|
11b |
8.75 |
-58.12 |
-39.38 |
4.44 |
|
12 |
40.25 |
16.88 |
-20.62 |
5.73 |
49 |
13 |
22.75 |
-46.88 |
-61.88 |
5.70 |
492 |
13a |
22.75 |
-58.12 |
-61.88 |
5.38 |
|
14 |
26.25 |
-46.88 |
-46.88 |
5.69 |
147 |
15 |
-1.75 |
-50.62 |
-39.38 |
5.66 |
147 |
16 |
-26.25 |
-16.88 |
-24.38 |
5.64 |
147 |
17 |
12.25 |
-28.12 |
-73.12 |
5.60 |
246 |
18 |
-50.75 |
35.62 |
-16.88 |
5.58 |
246 |
19 |
-33.25 |
-73.12 |
31.88 |
5.56 |
49 |
20 |
-15.75 |
-28.12 |
-43.12 |
5.55 |
49 |
21 |
19.25 |
-76.88 |
-13.12 |
5.50 |
492 |
22 |
-12.25 |
-24.38 |
-76.88 |
5.46 |
196 |
23 |
-47.25 |
-13.12 |
13.12 |
5.42 |
98 |
24 |
26.25 |
-20.62 |
-13.12 |
5.41 |
344 |
25 |
-29.75 |
9.38 |
-28.12 |
5.38 |
246 |
26 |
-57.75 |
-16.88 |
1.88 |
5.34 |
98 |
27 |
22.75 |
-43.12 |
9.38 |
5.33 |
246 |
28 |
-47.25 |
-61.88 |
-5.62 |
5.29 |
98 |
29 |
-40.25 |
-39.38 |
31.88 |
5.27 |
344 |
29a |
-29.75 |
-39.38 |
31.88 |
4.36 |
|
30 |
-19.25 |
-50.62 |
-39.38 |
5.26 |
147 |
31 |
-12.25 |
5.62 |
-16.88 |
5.25 |
49 |
32 |
-29.75 |
-43.12 |
-50.62 |
5.24 |
393 |
33 |
8.75 |
-91.88 |
5.62 |
5.24 |
49 |
34 |
1.75 |
50.62 |
-16.88 |
5.19 |
344 |
35 |
-50.75 |
-50.62 |
20.62 |
5.17 |
147 |
36 |
43.75 |
-50.62 |
-5.62 |
5.17 |
935 |
36a |
47.25 |
-43.12 |
-1.88 |
4.41 |
|
36b |
50.75 |
-50.62 |
-5.62 |
4.15 |
|
37 |
26.25 |
9.38 |
-16.88 |
5.16 |
196 |
38 |
5.25 |
-76.88 |
24.38 |
5.15 |
49 |
39 |
-29.75 |
-84.38 |
1.88 |
5.14 |
49 |
40 |
26.25 |
-69.38 |
-16.88 |
5.14 |
246 |
41 |
-54.25 |
-31.88 |
-13.12 |
5.14 |
49 |
42 |
-47.25 |
-9.38 |
5.62 |
5.10 |
295 |
43 |
33.25 |
5.62 |
-13.12 |
5.10 |
246 |
44 |
-40.25 |
24.38 |
-9.38 |
5.08 |
49 |
45 |
12.25 |
-84.38 |
-28.12 |
5.07 |
98 |
46 |
-29.75 |
-80.62 |
-24.38 |
5.05 |
49 |
47 |
-54.25 |
-46.88 |
-5.62 |
5.02 |
98 |
48 |
26.25 |
31.88 |
-31.88 |
5.02 |
147 |
49 |
12.25 |
-13.12 |
-28.12 |
5.02 |
98 |
50 |
29.75 |
1.88 |
-9.38 |
5.01 |
98 |
51 |
-47.25 |
-39.38 |
-20.62 |
5.01 |
885 |
51a |
-50.75 |
-39.38 |
-9.38 |
4.50 |
|
52 |
-19.25 |
-58.12 |
-9.38 |
5.00 |
196 |
53 |
33.25 |
20.62 |
-20.62 |
5.00 |
98 |
54 |
5.25 |
-61.88 |
-20.62 |
4.97 |
295 |
55 |
-33.25 |
13.12 |
28.12 |
4.93 |
246 |
56 |
-47.25 |
-28.12 |
13.12 |
4.90 |
147 |
57 |
1.75 |
-43.12 |
-1.88 |
4.90 |
49 |
58 |
-22.75 |
-58.12 |
-46.88 |
4.89 |
147 |
59 |
-15.75 |
-76.88 |
28.12 |
4.88 |
196 |
60 |
33.25 |
9.38 |
-24.38 |
4.88 |
98 |
61 |
-61.25 |
-5.62 |
20.62 |
4.87 |
147 |
62 |
-40.25 |
-20.62 |
-31.88 |
4.87 |
49 |
63 |
-50.75 |
16.88 |
-1.88 |
4.86 |
147 |
64 |
-15.75 |
-50.62 |
-1.88 |
4.86 |
49 |
65 |
40.25 |
-35.62 |
-24.38 |
4.86 |
2067 |
65a |
43.75 |
-28.12 |
-9.38 |
4.70 |
|
65b |
40.25 |
-20.62 |
-13.12 |
4.57 |
|
65c |
47.25 |
-35.62 |
-20.62 |
4.13 |
|
66 |
22.75 |
-20.62 |
-35.62 |
4.84 |
98 |
67 |
36.75 |
28.12 |
-35.62 |
4.84 |
49 |
68 |
-15.75 |
16.88 |
43.12 |
4.82 |
147 |
69 |
-43.75 |
50.62 |
16.88 |
4.82 |
49 |
70 |
12.25 |
-65.62 |
-24.38 |
4.81 |
246 |
71 |
-47.25 |
-28.12 |
5.62 |
4.81 |
98 |
72 |
1.75 |
-58.12 |
-24.38 |
4.80 |
98 |
73 |
29.75 |
-50.62 |
-50.62 |
4.77 |
196 |
74 |
19.25 |
-43.12 |
-20.62 |
4.75 |
98 |
75 |
36.75 |
-65.62 |
-13.12 |
4.75 |
344 |
76 |
-1.75 |
-58.12 |
-54.38 |
4.73 |
49 |
77 |
19.25 |
35.62 |
28.12 |
4.72 |
49 |
78 |
-40.25 |
-61.88 |
-16.88 |
4.70 |
295 |
79 |
-22.75 |
1.88 |
-1.88 |
4.69 |
49 |
80 |
22.75 |
-16.88 |
-9.38 |
4.69 |
98 |
81 |
33.25 |
31.88 |
-9.38 |
4.69 |
98 |
82 |
-8.75 |
-46.88 |
-65.62 |
4.68 |
246 |
83 |
5.25 |
-73.12 |
16.88 |
4.67 |
344 |
83a |
-1.75 |
-65.62 |
16.88 |
3.95 |
|
84 |
22.75 |
-20.62 |
-28.12 |
4.67 |
295 |
84a |
12.25 |
-20.62 |
-31.88 |
4.46 |
|
85 |
-15.75 |
-1.88 |
-69.38 |
4.65 |
49 |
86 |
-47.25 |
35.62 |
16.88 |
4.65 |
196 |
87 |
12.25 |
20.62 |
35.62 |
4.64 |
49 |
88 |
-26.25 |
-20.62 |
-13.12 |
4.64 |
98 |
89 |
-29.75 |
13.12 |
-13.12 |
4.63 |
147 |
90 |
-15.75 |
-31.88 |
-61.88 |
4.63 |
49 |
91 |
-47.25 |
-54.38 |
-9.38 |
4.62 |
344 |
92 |
50.75 |
43.12 |
-5.62 |
4.61 |
49 |
93 |
40.25 |
31.88 |
13.12 |
4.59 |
49 |
94 |
12.25 |
-54.38 |
-46.88 |
4.59 |
98 |
95 |
-15.75 |
-39.38 |
-50.62 |
4.58 |
49 |
96 |
-5.25 |
-31.88 |
58.12 |
4.57 |
49 |
97 |
-1.75 |
58.12 |
13.12 |
4.57 |
49 |
98 |
22.75 |
-35.62 |
54.38 |
4.57 |
246 |
99 |
-12.25 |
-58.12 |
-16.88 |
4.56 |
49 |
100 |
-12.25 |
-13.12 |
-46.88 |
4.55 |
246 |
101 |
-19.25 |
-76.88 |
-28.12 |
4.55 |
147 |
102 |
8.75 |
-20.62 |
-13.12 |
4.55 |
147 |
103 |
1.75 |
-76.88 |
35.62 |
4.55 |
49 |
104 |
-36.75 |
-76.88 |
1.88 |
4.55 |
246 |
105 |
-61.25 |
-20.62 |
13.12 |
4.54 |
49 |
106 |
-1.75 |
-9.38 |
-20.62 |
4.54 |
49 |
107 |
-5.25 |
-13.12 |
-69.38 |
4.53 |
49 |
108 |
-57.75 |
-9.38 |
9.38 |
4.53 |
295 |
108a |
-61.25 |
-1.88 |
9.38 |
4.20 |
|
109 |
-47.25 |
-28.12 |
43.12 |
4.52 |
49 |
110 |
-47.25 |
16.88 |
5.62 |
4.52 |
98 |
111 |
8.75 |
-16.88 |
46.88 |
4.52 |
49 |
112 |
-12.25 |
-58.12 |
-46.88 |
4.52 |
49 |
113 |
-36.75 |
43.12 |
24.38 |
4.51 |
98 |
114 |
-22.75 |
-76.88 |
-16.88 |
4.51 |
49 |
115 |
-29.75 |
-58.12 |
-9.38 |
4.51 |
49 |
116 |
1.75 |
13.12 |
9.38 |
4.50 |
49 |
117 |
15.75 |
-1.88 |
-16.88 |
4.50 |
196 |
118 |
33.25 |
-9.38 |
-58.12 |
4.50 |
98 |
119 |
50.75 |
-5.62 |
5.62 |
4.49 |
49 |
120 |
33.25 |
-50.62 |
-20.62 |
4.49 |
246 |
121 |
-50.75 |
9.38 |
-16.88 |
4.48 |
196 |
122 |
40.25 |
35.62 |
-1.88 |
4.48 |
49 |
123 |
8.75 |
-50.62 |
-20.62 |
4.48 |
49 |
124 |
-1.75 |
-46.88 |
1.88 |
4.46 |
98 |
125 |
-47.25 |
20.62 |
-13.12 |
4.46 |
49 |
126 |
15.75 |
9.38 |
43.12 |
4.46 |
98 |
127 |
-40.25 |
-65.62 |
-5.62 |
4.45 |
49 |
128 |
-15.75 |
9.38 |
-20.62 |
4.45 |
98 |
129 |
12.25 |
-9.38 |
13.12 |
4.45 |
49 |
130 |
50.75 |
1.88 |
43.12 |
4.44 |
98 |
131 |
-26.25 |
-54.38 |
46.88 |
4.43 |
98 |
132 |
-15.75 |
-76.88 |
20.62 |
4.43 |
49 |
133 |
-50.75 |
-16.88 |
24.38 |
4.42 |
49 |
134 |
-50.75 |
-5.62 |
-5.62 |
4.42 |
49 |
135 |
40.25 |
5.62 |
-24.38 |
4.42 |
49 |
136 |
-50.75 |
9.38 |
9.38 |
4.41 |
49 |
137 |
-50.75 |
16.88 |
-13.12 |
4.41 |
147 |
138 |
-40.25 |
9.38 |
-28.12 |
4.41 |
147 |
139 |
19.25 |
-1.88 |
28.12 |
4.38 |
49 |
140 |
33.25 |
24.38 |
39.38 |
4.38 |
49 |
141 |
-15.75 |
24.38 |
-9.38 |
4.38 |
49 |
142 |
22.75 |
-61.88 |
-46.88 |
4.38 |
147 |
143 |
-40.25 |
-46.88 |
1.88 |
4.38 |
147 |
144 |
-12.25 |
54.38 |
-9.38 |
4.37 |
98 |
145 |
26.25 |
28.12 |
-20.62 |
4.37 |
98 |
146 |
57.75 |
35.62 |
28.12 |
4.37 |
98 |
147 |
5.25 |
-88.12 |
-1.88 |
4.37 |
49 |
148 |
-15.75 |
13.12 |
50.62 |
4.36 |
98 |
149 |
-36.75 |
28.12 |
31.88 |
4.36 |
246 |
150 |
68.25 |
-13.12 |
-9.38 |
4.36 |
246 |
150a |
68.25 |
-1.88 |
-9.38 |
4.29 |
|
151 |
1.75 |
-5.62 |
-13.12 |
4.35 |
49 |
152 |
-47.25 |
-24.38 |
-16.88 |
4.35 |
98 |
153 |
-26.25 |
13.12 |
46.88 |
4.35 |
49 |
154 |
5.25 |
-35.62 |
-58.12 |
4.35 |
98 |
155 |
36.75 |
-73.12 |
5.62 |
4.34 |
98 |
156 |
-33.25 |
-9.38 |
-13.12 |
4.34 |
344 |
157 |
-15.75 |
-9.38 |
28.12 |
4.34 |
295 |
158 |
-19.25 |
-54.38 |
-61.88 |
4.33 |
196 |
159 |
-8.75 |
5.62 |
-24.38 |
4.33 |
49 |
160 |
19.25 |
-35.62 |
69.38 |
4.32 |
49 |
161 |
-29.75 |
-80.62 |
-9.38 |
4.32 |
49 |
162 |
19.25 |
-9.38 |
20.62 |
4.32 |
49 |
163 |
-1.75 |
-1.88 |
1.88 |
4.32 |
196 |
164 |
-15.75 |
-54.38 |
43.12 |
4.31 |
49 |
165 |
-40.25 |
-28.12 |
-20.62 |
4.31 |
49 |
166 |
19.25 |
-31.88 |
16.88 |
4.31 |
49 |
167 |
15.75 |
-1.88 |
-1.88 |
4.31 |
49 |
168 |
-15.75 |
-16.88 |
24.38 |
4.30 |
98 |
169 |
-36.75 |
58.12 |
35.62 |
4.29 |
49 |
170 |
12.25 |
-80.62 |
13.12 |
4.29 |
147 |
171 |
-1.75 |
-24.38 |
9.38 |
4.29 |
49 |
172 |
-1.75 |
-54.38 |
-9.38 |
4.28 |
98 |
173 |
-43.75 |
43.12 |
-28.12 |
4.28 |
98 |
174 |
5.25 |
-58.12 |
-54.38 |
4.28 |
49 |
175 |
54.25 |
-24.38 |
-5.62 |
4.28 |
344 |
176 |
-57.75 |
-31.88 |
-5.62 |
4.28 |
49 |
177 |
15.75 |
50.62 |
58.12 |
4.27 |
98 |
178 |
36.75 |
-61.88 |
-5.62 |
4.27 |
49 |
179 |
33.25 |
-50.62 |
-28.12 |
4.27 |
49 |
180 |
-5.25 |
31.88 |
-20.62 |
4.26 |
147 |
181 |
15.75 |
-35.62 |
31.88 |
4.26 |
98 |
182 |
-47.25 |
-65.62 |
1.88 |
4.26 |
196 |
183 |
-54.25 |
-20.62 |
-24.38 |
4.25 |
49 |
184 |
26.25 |
-80.62 |
-9.38 |
4.25 |
49 |
185 |
22.75 |
16.88 |
5.62 |
4.24 |
147 |
186 |
5.25 |
-65.62 |
-13.12 |
4.23 |
196 |
187 |
-47.25 |
24.38 |
20.62 |
4.23 |
98 |
188 |
-47.25 |
-58.12 |
13.12 |
4.23 |
98 |
189 |
40.25 |
9.38 |
-20.62 |
4.23 |
98 |
190 |
19.25 |
28.12 |
31.88 |
4.23 |
49 |
191 |
12.25 |
50.62 |
-1.88 |
4.23 |
98 |
192 |
47.25 |
-54.38 |
-16.88 |
4.23 |
49 |
193 |
12.25 |
61.88 |
5.62 |
4.22 |
49 |
194 |
19.25 |
-9.38 |
5.62 |
4.22 |
49 |
195 |
-57.75 |
-31.88 |
24.38 |
4.22 |
98 |
196 |
-19.25 |
-20.62 |
-35.62 |
4.21 |
98 |
197 |
19.25 |
-84.38 |
-20.62 |
4.21 |
49 |
198 |
12.25 |
43.12 |
-16.88 |
4.21 |
49 |
199 |
-1.75 |
-9.38 |
-46.88 |
4.21 |
49 |
200 |
15.75 |
-24.38 |
-35.62 |
4.21 |
246 |
201 |
-5.25 |
-24.38 |
-20.62 |
4.20 |
147 |
202 |
-1.75 |
-50.62 |
-1.88 |
4.20 |
49 |
203 |
15.75 |
-73.12 |
-31.88 |
4.20 |
49 |
204 |
-47.25 |
-28.12 |
28.12 |
4.20 |
49 |
205 |
36.75 |
-31.88 |
-9.38 |
4.20 |
246 |
206 |
12.25 |
5.62 |
43.12 |
4.19 |
49 |
207 |
-1.75 |
76.88 |
5.62 |
4.19 |
49 |
208 |
-29.75 |
20.62 |
-24.38 |
4.18 |
49 |
209 |
47.25 |
-54.38 |
-1.88 |
4.18 |
49 |
210 |
1.75 |
-5.62 |
-54.38 |
4.18 |
49 |
211 |
40.25 |
-58.12 |
5.62 |
4.17 |
98 |
212 |
26.25 |
5.62 |
16.88 |
4.17 |
246 |
213 |
19.25 |
-5.62 |
43.12 |
4.17 |
98 |
214 |
-22.75 |
-69.38 |
-13.12 |
4.16 |
196 |
215 |
-1.75 |
-58.12 |
-28.12 |
4.16 |
98 |
216 |
19.25 |
65.62 |
9.38 |
4.16 |
98 |
217 |
-61.25 |
-16.88 |
9.38 |
4.16 |
49 |
218 |
36.75 |
43.12 |
-28.12 |
4.15 |
49 |
219 |
-1.75 |
-39.38 |
1.88 |
4.15 |
98 |
220 |
12.25 |
1.88 |
28.12 |
4.15 |
147 |
221 |
-15.75 |
-20.62 |
-58.12 |
4.15 |
49 |
222 |
29.75 |
-28.12 |
-24.38 |
4.15 |
49 |
223 |
19.25 |
16.88 |
28.12 |
4.15 |
49 |
224 |
40.25 |
-35.62 |
-43.12 |
4.15 |
49 |
225 |
-22.75 |
-50.62 |
54.38 |
4.15 |
49 |
226 |
-22.75 |
16.88 |
5.62 |
4.15 |
49 |
227 |
5.25 |
-80.62 |
-1.88 |
4.14 |
49 |
228 |
-36.75 |
20.62 |
35.62 |
4.14 |
246 |
229 |
-26.25 |
-73.12 |
-35.62 |
4.14 |
98 |
230 |
-43.75 |
24.38 |
-1.88 |
4.14 |
98 |
231 |
-8.75 |
9.38 |
24.38 |
4.13 |
196 |
232 |
8.75 |
20.62 |
-24.38 |
4.13 |
147 |
233 |
-57.75 |
5.62 |
13.12 |
4.13 |
98 |
234 |
26.25 |
-5.62 |
-1.88 |
4.12 |
49 |
235 |
-54.25 |
1.88 |
13.12 |
4.12 |
49 |
236 |
-33.25 |
-31.88 |
-65.62 |
4.12 |
98 |
237 |
-8.75 |
-46.88 |
-31.88 |
4.12 |
49 |
238 |
-1.75 |
-50.62 |
-24.38 |
4.12 |
147 |
239 |
-12.25 |
54.38 |
54.38 |
4.11 |
98 |
240 |
-47.25 |
46.88 |
20.62 |
4.11 |
49 |
241 |
-15.75 |
-1.88 |
16.88 |
4.10 |
49 |
242 |
-29.75 |
24.38 |
13.12 |
4.10 |
98 |
243 |
-57.75 |
-46.88 |
-1.88 |
4.10 |
246 |
244 |
-50.75 |
-20.62 |
9.38 |
4.10 |
98 |
245 |
19.25 |
-13.12 |
28.12 |
4.10 |
49 |
246 |
22.75 |
46.88 |
-16.88 |
4.10 |
49 |
247 |
19.25 |
-39.38 |
-13.12 |
4.09 |
49 |
248 |
-19.25 |
65.62 |
39.38 |
4.09 |
49 |
249 |
-1.75 |
-9.38 |
-5.62 |
4.09 |
49 |
250 |
-8.75 |
-39.38 |
-31.88 |
4.08 |
49 |
251 |
-40.25 |
-16.88 |
-50.62 |
4.08 |
49 |
252 |
-43.75 |
-39.38 |
-16.88 |
4.07 |
147 |
253 |
19.25 |
13.12 |
-1.88 |
4.07 |
98 |
254 |
22.75 |
5.62 |
-1.88 |
4.07 |
49 |
255 |
-8.75 |
-39.38 |
-39.38 |
4.06 |
442 |
255a |
-12.25 |
-46.88 |
-43.12 |
3.77 |
|
256 |
-19.25 |
61.88 |
5.62 |
4.06 |
49 |
257 |
54.25 |
-20.62 |
39.38 |
4.06 |
49 |
258 |
54.25 |
-9.38 |
20.62 |
4.06 |
147 |
259 |
22.75 |
-69.38 |
1.88 |
4.06 |
147 |
260 |
-19.25 |
-5.62 |
-24.38 |
4.04 |
393 |
261 |
-1.75 |
1.88 |
13.12 |
4.04 |
49 |
262 |
-40.25 |
16.88 |
24.38 |
4.03 |
98 |
263 |
33.25 |
5.62 |
28.12 |
4.03 |
49 |
264 |
-36.75 |
43.12 |
1.88 |
4.02 |
147 |
265 |
19.25 |
-69.38 |
-13.12 |
4.02 |
49 |
266 |
12.25 |
-9.38 |
5.62 |
4.02 |
49 |
267 |
12.25 |
-88.12 |
5.62 |
4.02 |
98 |
268 |
-26.25 |
-76.88 |
35.62 |
4.02 |
49 |
269 |
-47.25 |
-43.12 |
9.38 |
4.02 |
147 |
270 |
-50.75 |
39.38 |
9.38 |
4.02 |
49 |
271 |
33.25 |
-24.38 |
-13.12 |
4.01 |
49 |
272 |
40.25 |
-43.12 |
-28.12 |
4.01 |
49 |
273 |
29.75 |
-24.38 |
-16.88 |
4.01 |
49 |
274 |
26.25 |
-20.62 |
-65.62 |
4.00 |
98 |
275 |
-43.75 |
20.62 |
20.62 |
4.00 |
49 |
276 |
-15.75 |
-73.12 |
-13.12 |
4.00 |
49 |
277 |
-1.75 |
13.12 |
-20.62 |
3.99 |
98 |
278 |
57.75 |
-39.38 |
5.62 |
3.99 |
49 |
279 |
-29.75 |
-65.62 |
-20.62 |
3.99 |
49 |
280 |
-19.25 |
-50.62 |
16.88 |
3.99 |
49 |
281 |
5.25 |
-61.88 |
-46.88 |
3.98 |
49 |
282 |
22.75 |
31.88 |
9.38 |
3.98 |
49 |
283 |
-19.25 |
-65.62 |
-20.62 |
3.98 |
49 |
284 |
15.75 |
-16.88 |
-58.12 |
3.98 |
49 |
285 |
19.25 |
-13.12 |
-28.12 |
3.98 |
98 |
286 |
-47.25 |
-13.12 |
-54.38 |
3.97 |
98 |
287 |
-47.25 |
-39.38 |
16.88 |
3.97 |
49 |
288 |
1.75 |
-1.88 |
31.88 |
3.97 |
98 |
289 |
36.75 |
-39.38 |
-69.38 |
3.97 |
49 |
290 |
-1.75 |
-35.62 |
-61.88 |
3.96 |
98 |
291 |
-8.75 |
39.38 |
5.62 |
3.96 |
49 |
292 |
26.25 |
20.62 |
-24.38 |
3.96 |
98 |
293 |
-5.25 |
-84.38 |
-20.62 |
3.96 |
49 |
294 |
8.75 |
76.88 |
35.62 |
3.95 |
147 |
295 |
-22.75 |
31.88 |
-24.38 |
3.95 |
49 |
296 |
-26.25 |
46.88 |
5.62 |
3.95 |
147 |
297 |
-22.75 |
-9.38 |
13.12 |
3.95 |
49 |
298 |
-33.25 |
13.12 |
13.12 |
3.94 |
98 |
299 |
5.25 |
-43.12 |
-9.38 |
3.94 |
49 |
300 |
-47.25 |
-13.12 |
35.62 |
3.93 |
49 |
301 |
-68.25 |
-24.38 |
1.88 |
3.93 |
147 |
302 |
-8.75 |
-54.38 |
-31.88 |
3.93 |
49 |
303 |
-54.25 |
-28.12 |
-16.88 |
3.92 |
49 |
304 |
50.75 |
-54.38 |
-9.38 |
3.92 |
49 |
305 |
68.25 |
-31.88 |
9.38 |
3.91 |
196 |
306 |
12.25 |
-1.88 |
-69.38 |
3.91 |
98 |
307 |
19.25 |
16.88 |
16.88 |
3.91 |
147 |
308 |
-33.25 |
-16.88 |
-5.62 |
3.91 |
49 |
309 |
5.25 |
-28.12 |
-9.38 |
3.91 |
49 |
310 |
-5.25 |
46.88 |
54.38 |
3.90 |
98 |
311 |
-43.75 |
16.88 |
58.12 |
3.90 |
49 |
312 |
-33.25 |
1.88 |
-16.88 |
3.90 |
147 |
313 |
15.75 |
88.12 |
9.38 |
3.90 |
98 |
314 |
5.25 |
-65.62 |
54.38 |
3.90 |
147 |
315 |
-64.75 |
-13.12 |
-24.38 |
3.90 |
49 |
316 |
29.75 |
-43.12 |
-58.12 |
3.90 |
49 |
317 |
1.75 |
-43.12 |
-16.88 |
3.90 |
295 |
317a |
12.25 |
-39.38 |
-13.12 |
3.81 |
|
318 |
-47.25 |
-58.12 |
-28.12 |
3.90 |
49 |
319 |
33.25 |
5.62 |
35.62 |
3.89 |
98 |
320 |
50.75 |
-13.12 |
5.62 |
3.89 |
49 |
321 |
19.25 |
-24.38 |
16.88 |
3.89 |
49 |
322 |
-33.25 |
-69.38 |
39.38 |
3.89 |
49 |
323 |
15.75 |
-73.12 |
-20.62 |
3.89 |
49 |
324 |
64.75 |
-43.12 |
5.62 |
3.89 |
49 |
325 |
15.75 |
-46.88 |
20.62 |
3.88 |
49 |
326 |
-36.75 |
-31.88 |
-46.88 |
3.88 |
49 |
327 |
-12.25 |
-20.62 |
-61.88 |
3.88 |
49 |
328 |
-15.75 |
-73.12 |
39.38 |
3.88 |
98 |
329 |
-43.75 |
50.62 |
28.12 |
3.87 |
49 |
330 |
12.25 |
-13.12 |
31.88 |
3.87 |
98 |
331 |
19.25 |
-84.38 |
24.38 |
3.87 |
49 |
332 |
-5.25 |
-46.88 |
-16.88 |
3.87 |
147 |
333 |
-8.75 |
-65.62 |
-43.12 |
3.87 |
49 |
334 |
1.75 |
-58.12 |
9.38 |
3.87 |
49 |
335 |
-47.25 |
1.88 |
-28.12 |
3.87 |
49 |
336 |
8.75 |
46.88 |
-5.62 |
3.87 |
49 |
337 |
26.25 |
-80.62 |
1.88 |
3.87 |
49 |
338 |
-33.25 |
35.62 |
-24.38 |
3.86 |
98 |
339 |
-19.25 |
-13.12 |
61.88 |
3.86 |
49 |
340 |
12.25 |
-35.62 |
73.12 |
3.86 |
98 |
341 |
43.75 |
31.88 |
5.62 |
3.86 |
49 |
342 |
-57.75 |
1.88 |
-13.12 |
3.86 |
98 |
343 |
8.75 |
13.12 |
50.62 |
3.85 |
98 |
344 |
-26.25 |
5.62 |
-13.12 |
3.85 |
49 |
345 |
8.75 |
-24.38 |
9.38 |
3.85 |
49 |
346 |
-12.25 |
-20.62 |
-46.88 |
3.85 |
49 |
347 |
-26.25 |
1.88 |
43.12 |
3.85 |
98 |
348 |
12.25 |
24.38 |
61.88 |
3.85 |
49 |
349 |
-47.25 |
-61.88 |
20.62 |
3.85 |
49 |
350 |
19.25 |
-58.12 |
-13.12 |
3.85 |
49 |
351 |
-22.75 |
-5.62 |
-1.88 |
3.85 |
49 |
352 |
26.25 |
-61.88 |
31.88 |
3.85 |
49 |
353 |
-29.75 |
35.62 |
-9.38 |
3.85 |
49 |
354 |
47.25 |
13.12 |
-20.62 |
3.85 |
49 |
355 |
1.75 |
-9.38 |
-50.62 |
3.85 |
49 |
356 |
-15.75 |
-50.62 |
-31.88 |
3.84 |
196 |
357 |
-12.25 |
-31.88 |
-50.62 |
3.84 |
196 |
358 |
50.75 |
50.62 |
-1.88 |
3.84 |
49 |
359 |
29.75 |
-50.62 |
54.38 |
3.83 |
147 |
360 |
61.25 |
1.88 |
24.38 |
3.83 |
49 |
361 |
1.75 |
-31.88 |
1.88 |
3.82 |
49 |
362 |
36.75 |
-54.38 |
-20.62 |
3.82 |
49 |
363 |
26.25 |
-16.88 |
-58.12 |
3.82 |
49 |
364 |
-15.75 |
-46.88 |
-5.62 |
3.81 |
49 |
365 |
47.25 |
20.62 |
5.62 |
3.81 |
49 |
366 |
22.75 |
-28.12 |
69.38 |
3.81 |
98 |
367 |
40.25 |
-20.62 |
20.62 |
3.81 |
49 |
368 |
-43.75 |
-65.62 |
24.38 |
3.81 |
49 |
369 |
-19.25 |
-61.88 |
20.62 |
3.81 |
49 |
370 |
15.75 |
16.88 |
-16.88 |
3.80 |
49 |
371 |
29.75 |
-31.88 |
39.38 |
3.80 |
147 |
372 |
-12.25 |
46.88 |
28.12 |
3.80 |
49 |
373 |
12.25 |
69.38 |
5.62 |
3.80 |
49 |
374 |
15.75 |
-20.62 |
-20.62 |
3.80 |
49 |
375 |
22.75 |
-24.38 |
1.88 |
3.79 |
49 |
376 |
-29.75 |
-20.62 |
-69.38 |
3.79 |
49 |
377 |
-47.25 |
-1.88 |
-20.62 |
3.79 |
49 |
378 |
43.75 |
-69.38 |
-1.88 |
3.79 |
49 |
379 |
5.25 |
-28.12 |
73.12 |
3.79 |
49 |
380 |
19.25 |
35.62 |
1.88 |
3.78 |
98 |
381 |
47.25 |
13.12 |
5.62 |
3.78 |
98 |
382 |
-15.75 |
-5.62 |
61.88 |
3.78 |
98 |
383 |
-8.75 |
84.38 |
20.62 |
3.77 |
147 |
384 |
26.25 |
24.38 |
13.12 |
3.77 |
98 |
385 |
19.25 |
-9.38 |
-5.62 |
3.77 |
49 |
386 |
15.75 |
-16.88 |
5.62 |
3.77 |
49 |
387 |
-1.75 |
-28.12 |
58.12 |
3.76 |
49 |
388 |
-29.75 |
-1.88 |
-1.88 |
3.75 |
49 |
389 |
26.25 |
1.88 |
13.12 |
3.75 |
49 |
390 |
29.75 |
-58.12 |
-46.88 |
3.74 |
49 |
391 |
-40.25 |
35.62 |
31.88 |
3.74 |
49 |
392 |
36.75 |
50.62 |
1.88 |
3.74 |
98 |
393 |
-1.75 |
80.62 |
1.88 |
3.74 |
49 |
394 |
-57.75 |
-9.38 |
16.88 |
3.74 |
147 |
395 |
40.25 |
-9.38 |
-31.88 |
3.74 |
49 |
396 |
1.75 |
24.38 |
31.88 |
3.73 |
49 |
397 |
33.25 |
43.12 |
35.62 |
3.73 |
49 |
398 |
43.75 |
9.38 |
-39.38 |
3.73 |
49 |
399 |
26.25 |
13.12 |
9.38 |
3.73 |
49 |
400 |
33.25 |
-9.38 |
-9.38 |
3.73 |
49 |
401 |
40.25 |
-28.12 |
-1.88 |
3.73 |
49 |
402 |
22.75 |
-76.88 |
-35.62 |
3.73 |
98 |
403 |
-8.75 |
-46.88 |
-24.38 |
3.73 |
49 |
404 |
1.75 |
-20.62 |
-35.62 |
3.73 |
49 |
405 |
19.25 |
54.38 |
1.88 |
3.73 |
49 |
406 |
-26.25 |
-31.88 |
16.88 |
3.72 |
49 |
407 |
47.25 |
31.88 |
-24.38 |
3.72 |
49 |
408 |
-54.25 |
13.12 |
20.62 |
3.72 |
147 |
409 |
-33.25 |
-43.12 |
-61.88 |
3.72 |
49 |
410 |
19.25 |
-16.88 |
16.88 |
3.72 |
49 |
411 |
-19.25 |
-84.38 |
1.88 |
3.72 |
49 |
412 |
47.25 |
16.88 |
-39.38 |
3.72 |
49 |
413 |
40.25 |
-31.88 |
54.38 |
3.71 |
98 |
414 |
61.25 |
-31.88 |
39.38 |
3.71 |
49 |
415 |
-54.25 |
-24.38 |
-39.38 |
3.71 |
49 |
416 |
26.25 |
-20.62 |
65.62 |
3.71 |
49 |
417 |
36.75 |
-73.12 |
-9.38 |
3.71 |
49 |
418 |
29.75 |
-1.88 |
-20.62 |
3.71 |
49 |
419 |
15.75 |
-31.88 |
-50.62 |
3.71 |
49 |
420 |
-15.75 |
5.62 |
65.62 |
3.71 |
49 |
421 |
1.75 |
9.38 |
-16.88 |
3.70 |
49 |
422 |
-22.75 |
-20.62 |
-31.88 |
3.70 |
49 |
423 |
8.75 |
-73.12 |
35.62 |
3.70 |
49 |
424 |
36.75 |
-54.38 |
-28.12 |
3.70 |
49 |
425 |
43.75 |
-39.38 |
-1.88 |
3.70 |
49 |
426 |
-33.25 |
-35.62 |
-9.38 |
3.70 |
49 |
427 |
-50.75 |
28.12 |
46.88 |
3.69 |
49 |
428 |
-15.75 |
-43.12 |
1.88 |
3.69 |
49 |
429 |
-1.75 |
-43.12 |
-31.88 |
3.69 |
98 |
430 |
50.75 |
-16.88 |
28.12 |
3.68 |
49 |
431 |
-15.75 |
20.62 |
-43.12 |
3.68 |
98 |
432 |
43.75 |
-5.62 |
-13.12 |
3.68 |
49 |
433 |
29.75 |
-16.88 |
-61.88 |
3.68 |
49 |
434 |
57.75 |
-20.62 |
28.12 |
3.68 |
49 |
435 |
-47.25 |
46.88 |
28.12 |
3.68 |
49 |
436 |
15.75 |
-20.62 |
73.12 |
3.68 |
49 |
437 |
1.75 |
65.62 |
-16.88 |
3.68 |
98 |
438 |
-22.75 |
13.12 |
-24.38 |
3.67 |
49 |
439 |
-33.25 |
16.88 |
50.62 |
3.67 |
98 |
440 |
-15.75 |
-43.12 |
-43.12 |
3.67 |
98 |
441 |
-12.25 |
-9.38 |
-24.38 |
3.67 |
49 |
442 |
-1.75 |
20.62 |
-16.88 |
3.67 |
98 |
443 |
-26.25 |
-28.12 |
-31.88 |
3.67 |
49 |
444 |
-15.75 |
-69.38 |
28.12 |
3.66 |
49 |
445 |
-47.25 |
9.38 |
-9.38 |
3.66 |
49 |
446 |
-15.75 |
-1.88 |
-31.88 |
3.66 |
49 |
447 |
-29.75 |
-1.88 |
-24.38 |
3.66 |
98 |
448 |
26.25 |
1.88 |
-13.12 |
3.66 |
49 |
449 |
33.25 |
-24.38 |
-58.12 |
3.66 |
49 |
450 |
-40.25 |
-58.12 |
9.38 |
3.66 |
98 |
451 |
1.75 |
20.62 |
-39.38 |
3.65 |
98 |
452 |
47.25 |
16.88 |
39.38 |
3.65 |
49 |
453 |
-26.25 |
-35.62 |
54.38 |
3.65 |
49 |
454 |
22.75 |
-16.88 |
43.12 |
3.65 |
49 |
455 |
12.25 |
24.38 |
-39.38 |
3.65 |
49 |
456 |
-1.75 |
-16.88 |
-28.12 |
3.64 |
49 |
457 |
33.25 |
-39.38 |
-58.12 |
3.64 |
49 |
458 |
26.25 |
-20.62 |
20.62 |
3.64 |
49 |
459 |
19.25 |
5.62 |
-13.12 |
3.64 |
49 |
460 |
33.25 |
43.12 |
24.38 |
3.63 |
49 |
461 |
19.25 |
-9.38 |
35.62 |
3.63 |
49 |
462 |
-54.25 |
-20.62 |
-9.38 |
3.63 |
49 |
463 |
-5.25 |
-39.38 |
5.62 |
3.63 |
49 |
464 |
22.75 |
-54.38 |
61.88 |
3.62 |
49 |
465 |
19.25 |
-35.62 |
-20.62 |
3.62 |
147 |
466 |
-22.75 |
-80.62 |
1.88 |
3.62 |
49 |
467 |
40.25 |
-35.62 |
50.62 |
3.62 |
49 |
468 |
22.75 |
-1.88 |
5.62 |
3.62 |
49 |
469 |
43.75 |
-69.38 |
9.38 |
3.61 |
98 |
470 |
33.25 |
-58.12 |
-16.88 |
3.61 |
49 |
471 |
8.75 |
-65.62 |
20.62 |
3.61 |
49 |
472 |
26.25 |
-9.38 |
13.12 |
3.61 |
98 |
473 |
1.75 |
65.62 |
-9.38 |
3.61 |
49 |
474 |
-12.25 |
88.12 |
16.88 |
3.61 |
49 |
475 |
-47.25 |
61.88 |
1.88 |
3.61 |
49 |
476 |
-26.25 |
13.12 |
13.12 |
3.61 |
49 |
477 |
-33.25 |
-1.88 |
13.12 |
3.61 |
49 |
478 |
-8.75 |
-61.88 |
-46.88 |
3.61 |
49 |
479 |
40.25 |
28.12 |
-39.38 |
3.61 |
49 |
480 |
43.75 |
24.38 |
-5.62 |
3.61 |
49 |
481 |
-50.75 |
-58.12 |
1.88 |
3.61 |
49 |
482 |
26.25 |
-76.88 |
-16.88 |
3.60 |
49 |
483 |
-1.75 |
-9.38 |
-28.12 |
3.60 |
49 |
484 |
-5.25 |
-54.38 |
-54.38 |
3.60 |
49 |
485 |
-47.25 |
-9.38 |
43.12 |
3.60 |
49 |
486 |
-22.75 |
43.12 |
-28.12 |
3.59 |
49 |
487 |
-36.75 |
-16.88 |
-46.88 |
3.59 |
49 |
488 |
19.25 |
-31.88 |
-16.88 |
3.58 |
49 |
489 |
47.25 |
39.38 |
13.12 |
3.58 |
98 |
490 |
29.75 |
16.88 |
35.62 |
3.58 |
49 |
491 |
22.75 |
46.88 |
13.12 |
3.58 |
49 |
492 |
-29.75 |
-80.62 |
20.62 |
3.58 |
49 |
493 |
68.25 |
-28.12 |
16.88 |
3.57 |
49 |
494 |
-19.25 |
43.12 |
-1.88 |
3.57 |
49 |
495 |
19.25 |
-24.38 |
-39.38 |
3.57 |
49 |
496 |
-8.75 |
-9.38 |
-20.62 |
3.57 |
49 |
497 |
26.25 |
-80.62 |
-28.12 |
3.57 |
49 |
498 |
15.75 |
20.62 |
43.12 |
3.56 |
49 |
499 |
19.25 |
-46.88 |
31.88 |
3.56 |
49 |
500 |
22.75 |
73.12 |
5.62 |
3.56 |
49 |
501 |
50.75 |
-43.12 |
9.38 |
3.56 |
49 |
502 |
-57.75 |
-24.38 |
5.62 |
3.56 |
49 |
503 |
-1.75 |
-9.38 |
31.88 |
3.56 |
49 |
504 |
-15.75 |
-50.62 |
39.38 |
3.56 |
49 |
505 |
-57.75 |
39.38 |
16.88 |
3.56 |
98 |
506 |
12.25 |
-9.38 |
50.62 |
3.56 |
49 |
507 |
-12.25 |
-13.12 |
-73.12 |
3.55 |
98 |
508 |
-26.25 |
-61.88 |
31.88 |
3.55 |
49 |
509 |
-33.25 |
39.38 |
54.38 |
3.55 |
49 |
510 |
54.25 |
1.88 |
35.62 |
3.55 |
49 |
511 |
29.75 |
-31.88 |
-31.88 |
3.55 |
49 |
512 |
-33.25 |
65.62 |
20.62 |
3.55 |
49 |
513 |
-54.25 |
-9.38 |
-5.62 |
3.54 |
98 |
514 |
36.75 |
50.62 |
-16.88 |
3.54 |
49 |
515 |
15.75 |
28.12 |
-39.38 |
3.54 |
49 |
516 |
1.75 |
-1.88 |
-20.62 |
3.53 |
49 |
517 |
12.25 |
-65.62 |
1.88 |
3.53 |
49 |
518 |
29.75 |
65.62 |
43.12 |
3.53 |
49 |
519 |
47.25 |
-35.62 |
16.88 |
3.53 |
49 |
520 |
-40.25 |
-50.62 |
28.12 |
3.53 |
49 |
521 |
33.25 |
-28.12 |
65.62 |
3.53 |
49 |
522 |
5.25 |
5.62 |
-69.38 |
3.53 |
49 |
523 |
26.25 |
-58.12 |
-13.12 |
3.53 |
49 |
524 |
-1.75 |
-1.88 |
-5.62 |
3.52 |
49 |
525 |
-1.75 |
-46.88 |
-65.62 |
3.52 |
49 |
526 |
12.25 |
-54.38 |
-54.38 |
3.52 |
49 |
527 |
-5.25 |
43.12 |
-16.88 |
3.52 |
49 |
528 |
12.25 |
-9.38 |
-24.38 |
3.52 |
49 |
529 |
-50.75 |
-1.88 |
16.88 |
3.52 |
49 |
530 |
12.25 |
-35.62 |
9.38 |
3.52 |
49 |
531 |
36.75 |
35.62 |
16.88 |
3.52 |
147 |
532 |
19.25 |
20.62 |
20.62 |
3.52 |
49 |
533 |
-15.75 |
-69.38 |
-43.12 |
3.52 |
49 |
534 |
-33.25 |
-58.12 |
-1.88 |
3.52 |
49 |
535 |
-40.25 |
-69.38 |
31.88 |
3.52 |
49 |
536 |
-54.25 |
-13.12 |
13.12 |
3.51 |
98 |
537 |
8.75 |
28.12 |
-24.38 |
3.51 |
49 |
538 |
36.75 |
-24.38 |
-31.88 |
3.50 |
49 |
539 |
-36.75 |
-13.12 |
9.38 |
3.50 |
49 |
540 |
-54.25 |
-20.62 |
-50.62 |
3.50 |
49 |
541 |
36.75 |
20.62 |
31.88 |
3.50 |
49 |
542 |
8.75 |
-76.88 |
9.38 |
3.50 |
49 |
543 |
-47.25 |
-24.38 |
-5.62 |
3.49 |
49 |
544 |
-5.25 |
-61.88 |
20.62 |
3.49 |
49 |
545 |
-36.75 |
61.88 |
9.38 |
3.49 |
49 |
546 |
15.75 |
76.88 |
35.62 |
3.49 |
49 |
547 |
-50.75 |
-16.88 |
-13.12 |
3.49 |
98 |
548 |
5.25 |
-73.12 |
-16.88 |
3.49 |
49 |
549 |
15.75 |
28.12 |
-5.62 |
3.49 |
49 |
550 |
19.25 |
-28.12 |
-24.38 |
3.49 |
49 |
551 |
19.25 |
-50.62 |
-73.12 |
3.49 |
49 |
552 |
-36.75 |
35.62 |
-13.12 |
3.49 |
49 |
553 |
1.75 |
-16.88 |
-24.38 |
3.49 |
49 |
554 |
-29.75 |
35.62 |
-1.88 |
3.48 |
49 |
555 |
12.25 |
-84.38 |
-5.62 |
3.48 |
49 |
556 |
33.25 |
-35.62 |
-5.62 |
3.48 |
49 |
557 |
50.75 |
39.38 |
-9.38 |
3.48 |
49 |
558 |
22.75 |
-5.62 |
20.62 |
3.48 |
49 |
559 |
-50.75 |
46.88 |
9.38 |
3.48 |
98 |
560 |
54.25 |
1.88 |
-31.88 |
3.48 |
49 |
561 |
22.75 |
-9.38 |
-50.62 |
3.48 |
49 |
562 |
40.25 |
-31.88 |
-58.12 |
3.48 |
49 |
563 |
40.25 |
-76.88 |
-9.38 |
3.47 |
49 |
564 |
-36.75 |
-31.88 |
20.62 |
3.47 |
49 |
565 |
36.75 |
1.88 |
20.62 |
3.47 |
49 |
566 |
40.25 |
-9.38 |
1.88 |
3.47 |
49 |
567 |
22.75 |
13.12 |
35.62 |
3.47 |
98 |
568 |
33.25 |
5.62 |
50.62 |
3.47 |
49 |
569 |
-50.75 |
5.62 |
-9.38 |
3.47 |
49 |
570 |
40.25 |
-35.62 |
-1.88 |
3.47 |
49 |
571 |
-50.75 |
-9.38 |
-13.12 |
3.46 |
49 |
572 |
-29.75 |
24.38 |
5.62 |
3.46 |
49 |
573 |
-26.25 |
-35.62 |
-9.38 |
3.46 |
49 |
574 |
-15.75 |
-16.88 |
-28.12 |
3.46 |
98 |
575 |
-47.25 |
-50.62 |
5.62 |
3.46 |
49 |
576 |
-36.75 |
-69.38 |
5.62 |
3.46 |
49 |
577 |
26.25 |
-65.62 |
46.88 |
3.45 |
49 |
578 |
22.75 |
5.62 |
5.62 |
3.45 |
98 |
579 |
19.25 |
-5.62 |
13.12 |
3.45 |
49 |
580 |
-5.25 |
9.38 |
9.38 |
3.45 |
98 |
581 |
-33.25 |
1.88 |
31.88 |
3.45 |
49 |
582 |
-19.25 |
-50.62 |
-46.88 |
3.45 |
49 |
583 |
-1.75 |
-16.88 |
-58.12 |
3.45 |
49 |
584 |
36.75 |
24.38 |
-13.12 |
3.45 |
49 |
585 |
-1.75 |
-35.62 |
-13.12 |
3.45 |
49 |
586 |
-15.75 |
9.38 |
35.62 |
3.45 |
147 |
587 |
-43.75 |
-35.62 |
-9.38 |
3.45 |
49 |
588 |
22.75 |
-9.38 |
43.12 |
3.45 |
49 |
589 |
33.25 |
50.62 |
24.38 |
3.45 |
49 |
590 |
1.75 |
-65.62 |
-43.12 |
3.45 |
49 |
591 |
-29.75 |
16.88 |
-5.62 |
3.44 |
49 |
592 |
43.75 |
-31.88 |
-39.38 |
3.44 |
49 |
593 |
26.25 |
9.38 |
24.38 |
3.44 |
49 |
594 |
-54.25 |
24.38 |
24.38 |
3.44 |
49 |
595 |
43.75 |
1.88 |
-1.88 |
3.44 |
49 |
596 |
29.75 |
-16.88 |
58.12 |
3.44 |
49 |
597 |
54.25 |
-16.88 |
1.88 |
3.44 |
98 |
598 |
-36.75 |
-69.38 |
13.12 |
3.44 |
49 |
599 |
-5.25 |
-43.12 |
69.38 |
3.44 |
49 |
600 |
15.75 |
-50.62 |
9.38 |
3.43 |
49 |
601 |
-26.25 |
-31.88 |
-58.12 |
3.43 |
49 |
602 |
15.75 |
1.88 |
35.62 |
3.43 |
49 |
603 |
-29.75 |
-43.12 |
58.12 |
3.43 |
49 |
604 |
-1.75 |
43.12 |
-20.62 |
3.43 |
49 |
605 |
-19.25 |
-65.62 |
9.38 |
3.43 |
49 |
606 |
12.25 |
-35.62 |
-61.88 |
3.43 |
49 |
607 |
-33.25 |
-9.38 |
-46.88 |
3.43 |
49 |
608 |
-1.75 |
-16.88 |
24.38 |
3.43 |
49 |
609 |
47.25 |
28.12 |
-39.38 |
3.43 |
49 |
610 |
-36.75 |
16.88 |
1.88 |
3.43 |
49 |
611 |
47.25 |
-9.38 |
5.62 |
3.42 |
49 |
612 |
-19.25 |
1.88 |
58.12 |
3.42 |
49 |
613 |
-26.25 |
-24.38 |
-5.62 |
3.42 |
49 |
614 |
36.75 |
-31.88 |
13.12 |
3.42 |
49 |
615 |
12.25 |
50.62 |
9.38 |
3.42 |
49 |
616 |
8.75 |
-50.62 |
-5.62 |
3.41 |
49 |
617 |
-33.25 |
-35.62 |
46.88 |
3.41 |
49 |
618 |
19.25 |
43.12 |
-5.62 |
3.41 |
49 |
619 |
12.25 |
-1.88 |
24.38 |
3.41 |
49 |
620 |
22.75 |
39.38 |
20.62 |
3.40 |
49 |
621 |
-1.75 |
-39.38 |
-16.88 |
3.40 |
49 |
622 |
-15.75 |
-1.88 |
1.88 |
3.40 |
49 |
623 |
-54.25 |
-16.88 |
-5.62 |
3.40 |
49 |
624 |
1.75 |
-84.38 |
-16.88 |
3.40 |
49 |
625 |
-47.25 |
43.12 |
9.38 |
3.40 |
49 |
626 |
5.25 |
-9.38 |
-20.62 |
3.40 |
49 |
627 |
-57.75 |
1.88 |
20.62 |
3.40 |
49 |
628 |
-43.75 |
13.12 |
16.88 |
3.40 |
98 |
629 |
5.25 |
80.62 |
31.88 |
3.40 |
49 |
630 |
-64.75 |
-35.62 |
-1.88 |
3.40 |
49 |
631 |
-1.75 |
-43.12 |
-9.38 |
3.40 |
49 |
632 |
-54.25 |
-9.38 |
20.62 |
3.40 |
49 |
633 |
1.75 |
-69.38 |
46.88 |
3.40 |
49 |
634 |
-12.25 |
-5.62 |
-20.62 |
3.39 |
49 |
635 |
-8.75 |
43.12 |
24.38 |
3.39 |
49 |
636 |
12.25 |
-9.38 |
43.12 |
3.39 |
49 |
637 |
12.25 |
-35.62 |
-16.88 |
3.39 |
49 |
638 |
50.75 |
-16.88 |
35.62 |
3.39 |
49 |
639 |
-5.25 |
1.88 |
-58.12 |
3.39 |
49 |
640 |
12.25 |
-35.62 |
65.62 |
3.39 |
49 |
641 |
33.25 |
-13.12 |
65.62 |
3.38 |
49 |
642 |
19.25 |
-69.38 |
20.62 |
3.38 |
49 |
643 |
19.25 |
-31.88 |
-54.38 |
3.38 |
49 |
644 |
29.75 |
-39.38 |
-54.38 |
3.38 |
49 |
645 |
-54.25 |
-35.62 |
-5.62 |
3.37 |
49 |
646 |
-47.25 |
-16.88 |
-24.38 |
3.37 |
49 |
647 |
-36.75 |
9.38 |
54.38 |
3.37 |
49 |
648 |
50.75 |
-50.62 |
9.38 |
3.37 |
49 |
649 |
-26.25 |
-5.62 |
65.62 |
3.37 |
49 |
650 |
-33.25 |
-39.38 |
-28.12 |
3.36 |
49 |
651 |
33.25 |
43.12 |
-16.88 |
3.36 |
49 |
652 |
43.75 |
-58.12 |
-1.88 |
3.36 |
49 |
653 |
-47.25 |
16.88 |
-24.38 |
3.36 |
49 |
654 |
-19.25 |
58.12 |
39.38 |
3.36 |
49 |
655 |
-40.25 |
-5.62 |
35.62 |
3.36 |
49 |
656 |
-36.75 |
61.88 |
16.88 |
3.36 |
49 |
657 |
-1.75 |
-28.12 |
20.62 |
3.35 |
98 |
658 |
-8.75 |
-54.38 |
9.38 |
3.35 |
49 |
659 |
12.25 |
-69.38 |
5.62 |
3.35 |
49 |
660 |
-19.25 |
-43.12 |
31.88 |
3.35 |
98 |
661 |
-1.75 |
-76.88 |
1.88 |
3.35 |
49 |
662 |
33.25 |
-20.62 |
-9.38 |
3.35 |
49 |
663 |
-12.25 |
20.62 |
73.12 |
3.35 |
49 |
664 |
-8.75 |
13.12 |
-13.12 |
3.35 |
49 |
665 |
61.25 |
-35.62 |
35.62 |
3.35 |
49 |
666 |
43.75 |
-9.38 |
46.88 |
3.34 |
49 |
667 |
1.75 |
28.12 |
-5.62 |
3.34 |
49 |
668 |
47.25 |
5.62 |
-1.88 |
3.34 |
98 |
669 |
15.75 |
-5.62 |
28.12 |
3.34 |
49 |
670 |
15.75 |
-13.12 |
-73.12 |
3.34 |
49 |
671 |
54.25 |
1.88 |
9.38 |
3.34 |
49 |
672 |
22.75 |
9.38 |
46.88 |
3.34 |
49 |
673 |
40.25 |
-5.62 |
-9.38 |
3.33 |
49 |
674 |
61.25 |
5.62 |
31.88 |
3.33 |
49 |
675 |
29.75 |
-1.88 |
-54.38 |
3.33 |
49 |
676 |
1.75 |
-9.38 |
-16.88 |
3.33 |
49 |
677 |
19.25 |
-13.12 |
73.12 |
3.33 |
49 |
678 |
-12.25 |
16.88 |
20.62 |
3.33 |
49 |
679 |
15.75 |
46.88 |
46.88 |
3.33 |
49 |
680 |
-43.75 |
-61.88 |
9.38 |
3.33 |
49 |
681 |
47.25 |
-20.62 |
20.62 |
3.33 |
49 |
682 |
-5.25 |
-61.88 |
54.38 |
3.33 |
49 |
683 |
-1.75 |
-69.38 |
-13.12 |
3.32 |
49 |
684 |
50.75 |
-20.62 |
-43.12 |
3.32 |
49 |
685 |
54.25 |
-39.38 |
-24.38 |
3.32 |
49 |
686 |
29.75 |
-43.12 |
-20.62 |
3.32 |
49 |
687 |
-12.25 |
-76.88 |
-9.38 |
3.32 |
49 |
688 |
-15.75 |
20.62 |
20.62 |
3.32 |
49 |
689 |
-33.25 |
9.38 |
16.88 |
3.32 |
49 |
690 |
-29.75 |
9.38 |
61.88 |
3.31 |
49 |
691 |
40.25 |
13.12 |
-46.88 |
3.31 |
49 |
692 |
1.75 |
-58.12 |
-13.12 |
3.31 |
49 |
693 |
1.75 |
1.88 |
-16.88 |
3.31 |
49 |
694 |
12.25 |
-50.62 |
39.38 |
3.31 |
49 |
695 |
-36.75 |
5.62 |
-9.38 |
3.31 |
49 |
696 |
26.25 |
16.88 |
-20.62 |
3.31 |
49 |
697 |
12.25 |
-61.88 |
16.88 |
3.31 |
49 |
698 |
22.75 |
-50.62 |
35.62 |
3.31 |
49 |
699 |
19.25 |
-46.88 |
-5.62 |
3.31 |
49 |
700 |
12.25 |
-50.62 |
-1.88 |
3.30 |
49 |
701 |
-12.25 |
-16.88 |
-65.62 |
3.30 |
49 |
702 |
-19.25 |
24.38 |
31.88 |
3.30 |
49 |
703 |
47.25 |
5.62 |
31.88 |
3.30 |
49 |
704 |
5.25 |
46.88 |
13.12 |
3.30 |
49 |
705 |
-22.75 |
-28.12 |
31.88 |
3.30 |
49 |
706 |
33.25 |
-76.88 |
-28.12 |
3.30 |
49 |
707 |
22.75 |
20.62 |
16.88 |
3.29 |
49 |
708 |
5.25 |
-16.88 |
-20.62 |
3.29 |
49 |
709 |
-54.25 |
-46.88 |
13.12 |
3.29 |
49 |
house
Contrast Plot
Cluster Table
Height control |
fpr |
α |
0.001 |
Threshold (computed) |
3.3 |
Cluster size threshold (voxels) |
0 |
Minimum distance (mm) |
8 |
Cluster ID |
X |
Y |
Z |
Peak Stat |
Cluster Size (mm3) |
1 |
22.75 |
20.62 |
9.38 |
5.62 |
639 |
2 |
-22.75 |
24.38 |
13.12 |
5.01 |
147 |
3 |
47.25 |
-54.38 |
-16.88 |
5.00 |
98 |
4 |
22.75 |
-5.62 |
20.62 |
4.99 |
49 |
5 |
22.75 |
13.12 |
20.62 |
4.88 |
98 |
6 |
-15.75 |
24.38 |
9.38 |
4.79 |
639 |
7 |
33.25 |
28.12 |
28.12 |
4.64 |
98 |
8 |
-22.75 |
-39.38 |
-1.88 |
4.59 |
246 |
8a |
-22.75 |
-28.12 |
-1.88 |
4.38 |
|
9 |
12.25 |
24.38 |
20.62 |
4.57 |
147 |
10 |
-29.75 |
28.12 |
5.62 |
4.56 |
49 |
11 |
-22.75 |
16.88 |
5.62 |
4.39 |
98 |
12 |
1.75 |
31.88 |
-13.12 |
4.33 |
49 |
13 |
-22.75 |
5.62 |
24.38 |
4.29 |
147 |
14 |
19.25 |
-16.88 |
24.38 |
4.28 |
98 |
15 |
-15.75 |
-35.62 |
-1.88 |
4.25 |
98 |
16 |
19.25 |
5.62 |
43.12 |
4.25 |
98 |
17 |
-12.25 |
-43.12 |
-50.62 |
4.25 |
49 |
18 |
8.75 |
-24.38 |
24.38 |
4.21 |
49 |
19 |
-50.75 |
9.38 |
-28.12 |
4.20 |
49 |
20 |
-33.25 |
-24.38 |
35.62 |
4.19 |
49 |
21 |
-12.25 |
-16.88 |
-20.62 |
4.18 |
49 |
22 |
-8.75 |
35.62 |
43.12 |
4.16 |
49 |
23 |
-22.75 |
39.38 |
46.88 |
4.15 |
147 |
24 |
26.25 |
-24.38 |
-69.38 |
4.14 |
49 |
25 |
1.75 |
13.12 |
-16.88 |
4.14 |
49 |
26 |
50.75 |
50.62 |
-1.88 |
4.14 |
49 |
27 |
22.75 |
-31.88 |
1.88 |
4.11 |
49 |
28 |
-12.25 |
13.12 |
1.88 |
4.11 |
98 |
29 |
-15.75 |
20.62 |
20.62 |
4.10 |
49 |
30 |
8.75 |
-9.38 |
31.88 |
4.09 |
98 |
31 |
-12.25 |
-28.12 |
-76.88 |
4.09 |
49 |
32 |
-15.75 |
-46.88 |
20.62 |
4.08 |
98 |
33 |
26.25 |
-61.88 |
31.88 |
4.05 |
49 |
34 |
36.75 |
-54.38 |
-20.62 |
4.01 |
49 |
35 |
15.75 |
-54.38 |
5.62 |
4.00 |
49 |
36 |
-12.25 |
1.88 |
-61.88 |
4.00 |
98 |
37 |
-33.25 |
-58.12 |
35.62 |
3.99 |
49 |
38 |
-54.25 |
-20.62 |
-9.38 |
3.97 |
49 |
39 |
-26.25 |
9.38 |
20.62 |
3.97 |
98 |
40 |
-15.75 |
20.62 |
1.88 |
3.96 |
49 |
41 |
15.75 |
-28.12 |
24.38 |
3.92 |
49 |
42 |
15.75 |
-39.38 |
13.12 |
3.92 |
49 |
43 |
22.75 |
-16.88 |
16.88 |
3.91 |
49 |
44 |
22.75 |
16.88 |
5.62 |
3.90 |
49 |
45 |
33.25 |
-43.12 |
-35.62 |
3.89 |
49 |
46 |
-29.75 |
16.88 |
9.38 |
3.89 |
49 |
47 |
8.75 |
-16.88 |
31.88 |
3.89 |
49 |
48 |
-40.25 |
-58.12 |
28.12 |
3.89 |
49 |
49 |
26.25 |
9.38 |
-31.88 |
3.87 |
49 |
50 |
43.75 |
-1.88 |
20.62 |
3.86 |
49 |
51 |
22.75 |
-43.12 |
-31.88 |
3.84 |
49 |
52 |
-22.75 |
20.62 |
20.62 |
3.83 |
98 |
53 |
22.75 |
-43.12 |
9.38 |
3.83 |
49 |
54 |
-15.75 |
31.88 |
5.62 |
3.83 |
49 |
55 |
36.75 |
-13.12 |
-31.88 |
3.83 |
49 |
56 |
-54.25 |
-13.12 |
-1.88 |
3.82 |
49 |
57 |
5.25 |
-20.62 |
-13.12 |
3.82 |
49 |
58 |
-29.75 |
-31.88 |
35.62 |
3.81 |
49 |
59 |
26.25 |
13.12 |
13.12 |
3.79 |
49 |
60 |
-26.25 |
13.12 |
16.88 |
3.78 |
49 |
61 |
33.25 |
5.62 |
-39.38 |
3.75 |
49 |
62 |
5.25 |
-65.62 |
54.38 |
3.73 |
49 |
63 |
-15.75 |
-20.62 |
-28.12 |
3.73 |
49 |
64 |
26.25 |
-1.88 |
13.12 |
3.72 |
49 |
65 |
-15.75 |
58.12 |
5.62 |
3.72 |
49 |
66 |
26.25 |
5.62 |
9.38 |
3.72 |
49 |
67 |
-15.75 |
-50.62 |
24.38 |
3.71 |
49 |
68 |
40.25 |
31.88 |
-24.38 |
3.71 |
49 |
69 |
50.75 |
-31.88 |
-50.62 |
3.70 |
49 |
70 |
-8.75 |
1.88 |
28.12 |
3.68 |
98 |
71 |
33.25 |
54.38 |
28.12 |
3.67 |
49 |
72 |
-47.25 |
-76.88 |
9.38 |
3.67 |
49 |
73 |
33.25 |
13.12 |
-5.62 |
3.66 |
49 |
74 |
8.75 |
20.62 |
20.62 |
3.65 |
49 |
75 |
-33.25 |
-73.12 |
-31.88 |
3.64 |
98 |
76 |
12.25 |
-31.88 |
-73.12 |
3.63 |
49 |
77 |
5.25 |
31.88 |
50.62 |
3.63 |
49 |
78 |
-12.25 |
-39.38 |
46.88 |
3.63 |
49 |
79 |
-19.25 |
61.88 |
20.62 |
3.62 |
49 |
80 |
40.25 |
-39.38 |
13.12 |
3.62 |
49 |
81 |
40.25 |
-13.12 |
-43.12 |
3.62 |
49 |
82 |
-22.75 |
-24.38 |
46.88 |
3.61 |
49 |
83 |
-33.25 |
9.38 |
5.62 |
3.61 |
49 |
84 |
33.25 |
-76.88 |
-24.38 |
3.60 |
49 |
85 |
29.75 |
-50.62 |
-39.38 |
3.60 |
49 |
86 |
-19.25 |
31.88 |
20.62 |
3.60 |
49 |
87 |
-1.75 |
-61.88 |
-39.38 |
3.60 |
49 |
88 |
15.75 |
-1.88 |
-16.88 |
3.59 |
49 |
89 |
-33.25 |
13.12 |
-1.88 |
3.58 |
49 |
90 |
26.25 |
9.38 |
-24.38 |
3.57 |
49 |
91 |
-36.75 |
-39.38 |
-46.88 |
3.57 |
49 |
92 |
8.75 |
43.12 |
-5.62 |
3.56 |
49 |
93 |
8.75 |
-61.88 |
-50.62 |
3.56 |
49 |
94 |
-5.25 |
39.38 |
-20.62 |
3.56 |
98 |
95 |
22.75 |
-13.12 |
20.62 |
3.56 |
49 |
96 |
40.25 |
-50.62 |
-54.38 |
3.56 |
98 |
97 |
-1.75 |
-58.12 |
-28.12 |
3.55 |
49 |
98 |
-43.75 |
-9.38 |
39.38 |
3.55 |
49 |
99 |
33.25 |
28.12 |
-46.88 |
3.54 |
49 |
100 |
-15.75 |
31.88 |
24.38 |
3.54 |
49 |
101 |
57.75 |
-54.38 |
1.88 |
3.53 |
49 |
102 |
-40.25 |
-1.88 |
24.38 |
3.52 |
49 |
103 |
33.25 |
9.38 |
1.88 |
3.52 |
49 |
104 |
1.75 |
-46.88 |
-5.62 |
3.52 |
49 |
105 |
22.75 |
-39.38 |
46.88 |
3.52 |
49 |
106 |
-26.25 |
1.88 |
13.12 |
3.51 |
49 |
107 |
-12.25 |
-5.62 |
-13.12 |
3.51 |
98 |
108 |
-36.75 |
-65.62 |
-16.88 |
3.51 |
49 |
109 |
-26.25 |
-50.62 |
-46.88 |
3.51 |
49 |
110 |
26.25 |
-73.12 |
31.88 |
3.50 |
49 |
111 |
26.25 |
-13.12 |
54.38 |
3.50 |
49 |
112 |
15.75 |
-50.62 |
9.38 |
3.50 |
49 |
113 |
-36.75 |
24.38 |
13.12 |
3.50 |
49 |
114 |
-33.25 |
61.88 |
39.38 |
3.50 |
49 |
115 |
19.25 |
-73.12 |
-16.88 |
3.49 |
98 |
116 |
-40.25 |
-69.38 |
20.62 |
3.49 |
49 |
117 |
-12.25 |
-43.12 |
-16.88 |
3.48 |
49 |
118 |
64.75 |
1.88 |
35.62 |
3.48 |
49 |
119 |
22.75 |
-76.88 |
20.62 |
3.47 |
49 |
120 |
-22.75 |
-9.38 |
-65.62 |
3.47 |
49 |
121 |
-50.75 |
31.88 |
9.38 |
3.47 |
49 |
122 |
-8.75 |
-24.38 |
1.88 |
3.44 |
49 |
123 |
19.25 |
-58.12 |
20.62 |
3.44 |
49 |
124 |
50.75 |
13.12 |
9.38 |
3.43 |
49 |
125 |
57.75 |
-16.88 |
16.88 |
3.43 |
49 |
126 |
-64.75 |
-5.62 |
28.12 |
3.43 |
49 |
127 |
-15.75 |
-24.38 |
-9.38 |
3.43 |
49 |
128 |
43.75 |
20.62 |
16.88 |
3.43 |
49 |
129 |
-64.75 |
-24.38 |
-20.62 |
3.42 |
49 |
130 |
5.25 |
-43.12 |
-1.88 |
3.42 |
49 |
131 |
1.75 |
54.38 |
-9.38 |
3.42 |
49 |
132 |
-8.75 |
-46.88 |
-31.88 |
3.42 |
49 |
133 |
-8.75 |
-28.12 |
5.62 |
3.42 |
49 |
134 |
-15.75 |
-61.88 |
43.12 |
3.42 |
49 |
135 |
29.75 |
1.88 |
13.12 |
3.42 |
49 |
136 |
36.75 |
28.12 |
39.38 |
3.41 |
49 |
137 |
50.75 |
-43.12 |
-1.88 |
3.41 |
49 |
138 |
29.75 |
-65.62 |
-24.38 |
3.41 |
49 |
139 |
22.75 |
-9.38 |
13.12 |
3.41 |
49 |
140 |
36.75 |
-50.62 |
-24.38 |
3.40 |
49 |
141 |
36.75 |
-61.88 |
-13.12 |
3.40 |
49 |
142 |
-15.75 |
-31.88 |
-50.62 |
3.40 |
49 |
143 |
-40.25 |
-28.12 |
-24.38 |
3.40 |
49 |
144 |
-40.25 |
-46.88 |
39.38 |
3.40 |
49 |
145 |
22.75 |
-73.12 |
-13.12 |
3.39 |
49 |
146 |
22.75 |
-9.38 |
35.62 |
3.39 |
49 |
147 |
22.75 |
-65.62 |
20.62 |
3.39 |
49 |
148 |
29.75 |
-16.88 |
46.88 |
3.39 |
49 |
149 |
-26.25 |
20.62 |
-1.88 |
3.38 |
49 |
150 |
15.75 |
-1.88 |
69.38 |
3.38 |
49 |
151 |
-22.75 |
-58.12 |
24.38 |
3.37 |
49 |
152 |
57.75 |
16.88 |
-1.88 |
3.37 |
49 |
153 |
-40.25 |
24.38 |
35.62 |
3.37 |
49 |
154 |
26.25 |
5.62 |
-28.12 |
3.36 |
49 |
155 |
-15.75 |
16.88 |
13.12 |
3.35 |
49 |
156 |
12.25 |
1.88 |
28.12 |
3.35 |
49 |
157 |
-5.25 |
28.12 |
13.12 |
3.35 |
49 |
158 |
15.75 |
24.38 |
-13.12 |
3.34 |
49 |
159 |
-8.75 |
28.12 |
28.12 |
3.34 |
49 |
160 |
-12.25 |
-58.12 |
-46.88 |
3.34 |
49 |
161 |
-12.25 |
-65.62 |
-39.38 |
3.34 |
49 |
162 |
19.25 |
24.38 |
5.62 |
3.34 |
49 |
163 |
-22.75 |
-16.88 |
24.38 |
3.33 |
49 |
164 |
-12.25 |
43.12 |
46.88 |
3.33 |
49 |
165 |
-15.75 |
-69.38 |
46.88 |
3.33 |
49 |
166 |
26.25 |
-16.88 |
-9.38 |
3.32 |
49 |
167 |
-26.25 |
-31.88 |
-69.38 |
3.32 |
49 |
168 |
26.25 |
-50.62 |
-35.62 |
3.32 |
49 |
169 |
-36.75 |
-24.38 |
1.88 |
3.32 |
49 |
170 |
19.25 |
-35.62 |
1.88 |
3.32 |
49 |
171 |
36.75 |
20.62 |
-13.12 |
3.31 |
49 |
172 |
8.75 |
-80.62 |
-5.62 |
3.31 |
49 |
173 |
12.25 |
-5.62 |
-5.62 |
3.30 |
49 |
174 |
-40.25 |
50.62 |
1.88 |
3.30 |
49 |
175 |
-15.75 |
-28.12 |
-5.62 |
3.29 |
49 |
176 |
29.75 |
-54.38 |
-24.38 |
3.29 |
49 |
chair
Contrast Plot
Cluster Table
Height control |
fpr |
α |
0.001 |
Threshold (computed) |
3.3 |
Cluster size threshold (voxels) |
0 |
Minimum distance (mm) |
8 |
Cluster ID |
X |
Y |
Z |
Peak Stat |
Cluster Size (mm3) |
1 |
40.25 |
-46.88 |
13.12 |
4.86 |
147 |
2 |
-36.75 |
-76.88 |
1.88 |
4.23 |
49 |
3 |
12.25 |
35.62 |
-5.62 |
4.20 |
49 |
4 |
-50.75 |
39.38 |
16.88 |
4.17 |
49 |
5 |
-50.75 |
-39.38 |
-1.88 |
3.94 |
147 |
6 |
-54.25 |
-43.12 |
46.88 |
3.90 |
49 |
7 |
33.25 |
-58.12 |
-1.88 |
3.89 |
49 |
8 |
-29.75 |
-43.12 |
-58.12 |
3.88 |
49 |
9 |
-36.75 |
-61.88 |
43.12 |
3.84 |
49 |
10 |
19.25 |
20.62 |
20.62 |
3.81 |
49 |
11 |
12.25 |
5.62 |
-24.38 |
3.77 |
98 |
12 |
22.75 |
24.38 |
16.88 |
3.76 |
49 |
13 |
33.25 |
43.12 |
-16.88 |
3.75 |
49 |
14 |
26.25 |
-46.88 |
-35.62 |
3.75 |
49 |
15 |
26.25 |
16.88 |
16.88 |
3.73 |
49 |
16 |
-15.75 |
-1.88 |
-16.88 |
3.70 |
49 |
17 |
-5.25 |
43.12 |
50.62 |
3.67 |
49 |
18 |
33.25 |
13.12 |
-1.88 |
3.66 |
49 |
19 |
-57.75 |
-9.38 |
-1.88 |
3.62 |
49 |
20 |
-22.75 |
-31.88 |
-69.38 |
3.61 |
49 |
21 |
-22.75 |
24.38 |
13.12 |
3.57 |
49 |
22 |
-57.75 |
13.12 |
1.88 |
3.52 |
49 |
23 |
33.25 |
-58.12 |
-16.88 |
3.50 |
49 |
24 |
-29.75 |
20.62 |
46.88 |
3.48 |
49 |
25 |
12.25 |
16.88 |
-20.62 |
3.44 |
49 |
26 |
33.25 |
28.12 |
-31.88 |
3.43 |
49 |
27 |
36.75 |
-24.38 |
20.62 |
3.43 |
49 |
28 |
43.75 |
-28.12 |
-13.12 |
3.40 |
49 |
29 |
29.75 |
13.12 |
-43.12 |
3.39 |
49 |
30 |
12.25 |
28.12 |
-16.88 |
3.38 |
49 |
31 |
-22.75 |
-43.12 |
-31.88 |
3.37 |
49 |
32 |
-1.75 |
5.62 |
31.88 |
3.37 |
49 |
33 |
33.25 |
9.38 |
-13.12 |
3.36 |
49 |
34 |
33.25 |
-20.62 |
-58.12 |
3.35 |
49 |
35 |
-15.75 |
-35.62 |
-24.38 |
3.34 |
49 |
36 |
29.75 |
-43.12 |
-35.62 |
3.34 |
49 |
37 |
-22.75 |
9.38 |
24.38 |
3.34 |
49 |
38 |
-36.75 |
-46.88 |
-54.38 |
3.33 |
49 |
39 |
1.75 |
28.12 |
-35.62 |
3.32 |
49 |
40 |
36.75 |
-28.12 |
-9.38 |
3.29 |
49 |
scrambledpix
Contrast Plot
Cluster Table
Height control |
fpr |
α |
0.001 |
Threshold (computed) |
3.3 |
Cluster size threshold (voxels) |
0 |
Minimum distance (mm) |
8 |
Cluster ID |
X |
Y |
Z |
Peak Stat |
Cluster Size (mm3) |
1 |
1.75 |
24.38 |
-13.12 |
5.74 |
49 |
2 |
-22.75 |
-46.88 |
43.12 |
4.82 |
98 |
3 |
-15.75 |
61.88 |
-9.38 |
4.79 |
147 |
4 |
-29.75 |
-61.88 |
-31.88 |
4.65 |
49 |
5 |
50.75 |
16.88 |
-28.12 |
4.14 |
147 |
6 |
-22.75 |
-54.38 |
-9.38 |
3.94 |
49 |
7 |
5.25 |
43.12 |
-28.12 |
3.92 |
49 |
8 |
-22.75 |
-9.38 |
20.62 |
3.82 |
49 |
9 |
40.25 |
-16.88 |
-39.38 |
3.80 |
49 |
10 |
-64.75 |
-31.88 |
39.38 |
3.78 |
49 |
11 |
-26.25 |
-69.38 |
39.38 |
3.59 |
49 |
12 |
22.75 |
-24.38 |
46.88 |
3.56 |
49 |
13 |
22.75 |
46.88 |
-5.62 |
3.54 |
49 |
14 |
-1.75 |
5.62 |
31.88 |
3.53 |
49 |
15 |
-40.25 |
-16.88 |
-54.38 |
3.46 |
49 |
16 |
33.25 |
35.62 |
-28.12 |
3.44 |
49 |
17 |
-15.75 |
-43.12 |
-16.88 |
3.41 |
49 |
18 |
26.25 |
-24.38 |
-69.38 |
3.40 |
49 |
19 |
1.75 |
13.12 |
31.88 |
3.34 |
49 |
20 |
33.25 |
-20.62 |
43.12 |
3.33 |
49 |
face
Contrast Plot
Cluster Table
Height control |
fpr |
α |
0.001 |
Threshold (computed) |
3.3 |
Cluster size threshold (voxels) |
0 |
Minimum distance (mm) |
8 |
Cluster ID |
X |
Y |
Z |
Peak Stat |
Cluster Size (mm3) |
1 |
1.75 |
24.38 |
-13.12 |
5.17 |
98 |
2 |
-50.75 |
-50.62 |
13.12 |
5.09 |
196 |
2a |
-47.25 |
-58.12 |
13.12 |
3.37 |
|
3 |
-47.25 |
-43.12 |
-35.62 |
4.74 |
49 |
4 |
68.25 |
-13.12 |
-9.38 |
4.74 |
147 |
5 |
-47.25 |
-39.38 |
16.88 |
4.47 |
98 |
6 |
29.75 |
-46.88 |
35.62 |
4.40 |
49 |
7 |
29.75 |
-54.38 |
46.88 |
4.38 |
49 |
8 |
-33.25 |
50.62 |
16.88 |
4.37 |
147 |
9 |
-57.75 |
-16.88 |
1.88 |
4.37 |
147 |
10 |
-36.75 |
31.88 |
16.88 |
4.22 |
98 |
11 |
-12.25 |
-58.12 |
-16.88 |
4.22 |
49 |
12 |
-26.25 |
24.38 |
-13.12 |
4.16 |
147 |
13 |
-40.25 |
46.88 |
13.12 |
4.14 |
98 |
14 |
22.75 |
-50.62 |
-24.38 |
4.11 |
49 |
15 |
-22.75 |
39.38 |
13.12 |
4.09 |
49 |
16 |
40.25 |
28.12 |
39.38 |
3.98 |
98 |
17 |
-15.75 |
13.12 |
73.12 |
3.97 |
98 |
18 |
5.25 |
20.62 |
65.62 |
3.95 |
49 |
19 |
5.25 |
-24.38 |
-20.62 |
3.93 |
49 |
20 |
-47.25 |
-50.62 |
20.62 |
3.88 |
49 |
21 |
43.75 |
35.62 |
35.62 |
3.83 |
98 |
22 |
-47.25 |
-28.12 |
28.12 |
3.80 |
147 |
23 |
-1.75 |
31.88 |
61.88 |
3.79 |
98 |
24 |
-54.25 |
-43.12 |
20.62 |
3.77 |
49 |
25 |
-8.75 |
13.12 |
65.62 |
3.77 |
49 |
26 |
1.75 |
-43.12 |
-1.88 |
3.75 |
49 |
27 |
-8.75 |
-46.88 |
-31.88 |
3.73 |
49 |
28 |
-47.25 |
-61.88 |
-5.62 |
3.72 |
49 |
29 |
-19.25 |
-73.12 |
39.38 |
3.72 |
49 |
30 |
-26.25 |
-88.12 |
-9.38 |
3.71 |
98 |
31 |
12.25 |
28.12 |
61.88 |
3.71 |
49 |
32 |
-50.75 |
-35.62 |
43.12 |
3.70 |
49 |
33 |
-36.75 |
-43.12 |
39.38 |
3.70 |
147 |
34 |
-47.25 |
24.38 |
20.62 |
3.69 |
49 |
35 |
-36.75 |
-31.88 |
-46.88 |
3.69 |
49 |
36 |
-47.25 |
-54.38 |
-9.38 |
3.69 |
49 |
37 |
40.25 |
43.12 |
16.88 |
3.69 |
49 |
38 |
-57.75 |
-9.38 |
-1.88 |
3.67 |
49 |
39 |
-57.75 |
31.88 |
31.88 |
3.67 |
49 |
40 |
5.25 |
-58.12 |
-24.38 |
3.66 |
98 |
41 |
-36.75 |
31.88 |
35.62 |
3.65 |
147 |
42 |
33.25 |
-46.88 |
-39.38 |
3.64 |
49 |
43 |
-43.75 |
-31.88 |
35.62 |
3.62 |
49 |
44 |
-40.25 |
-43.12 |
-16.88 |
3.60 |
49 |
45 |
-12.25 |
-76.88 |
28.12 |
3.60 |
49 |
46 |
-8.75 |
-28.12 |
61.88 |
3.58 |
49 |
47 |
19.25 |
-16.88 |
39.38 |
3.56 |
49 |
48 |
26.25 |
-43.12 |
35.62 |
3.56 |
49 |
49 |
43.75 |
-54.38 |
9.38 |
3.53 |
49 |
50 |
19.25 |
-46.88 |
-20.62 |
3.53 |
49 |
51 |
-29.75 |
31.88 |
-9.38 |
3.52 |
49 |
52 |
40.25 |
-39.38 |
-24.38 |
3.51 |
49 |
53 |
36.75 |
61.88 |
28.12 |
3.51 |
49 |
54 |
-15.75 |
-73.12 |
16.88 |
3.50 |
49 |
55 |
8.75 |
-1.88 |
9.38 |
3.50 |
49 |
56 |
-47.25 |
-46.88 |
16.88 |
3.49 |
49 |
57 |
-22.75 |
-46.88 |
-50.62 |
3.49 |
49 |
58 |
22.75 |
31.88 |
28.12 |
3.49 |
49 |
59 |
12.25 |
-58.12 |
-20.62 |
3.48 |
49 |
60 |
5.25 |
-65.62 |
13.12 |
3.48 |
49 |
61 |
-47.25 |
-16.88 |
-35.62 |
3.48 |
49 |
62 |
-19.25 |
-61.88 |
-9.38 |
3.47 |
49 |
63 |
-15.75 |
-13.12 |
24.38 |
3.47 |
98 |
64 |
-26.25 |
-43.12 |
-43.12 |
3.47 |
49 |
65 |
-12.25 |
-39.38 |
58.12 |
3.46 |
49 |
66 |
-1.75 |
39.38 |
-20.62 |
3.46 |
49 |
67 |
26.25 |
-43.12 |
-31.88 |
3.46 |
49 |
68 |
33.25 |
-61.88 |
-13.12 |
3.45 |
49 |
69 |
5.25 |
31.88 |
-35.62 |
3.45 |
49 |
70 |
-40.25 |
50.62 |
20.62 |
3.43 |
49 |
71 |
-40.25 |
-35.62 |
-35.62 |
3.43 |
49 |
72 |
-50.75 |
-28.12 |
35.62 |
3.42 |
49 |
73 |
15.75 |
-54.38 |
-20.62 |
3.41 |
49 |
74 |
36.75 |
-43.12 |
5.62 |
3.40 |
49 |
75 |
-33.25 |
39.38 |
54.38 |
3.39 |
49 |
76 |
-15.75 |
-54.38 |
50.62 |
3.38 |
49 |
77 |
29.75 |
-35.62 |
35.62 |
3.38 |
49 |
78 |
-43.75 |
-39.38 |
-9.38 |
3.36 |
49 |
79 |
-29.75 |
28.12 |
13.12 |
3.35 |
49 |
80 |
-1.75 |
-20.62 |
24.38 |
3.35 |
49 |
81 |
-40.25 |
20.62 |
54.38 |
3.35 |
49 |
82 |
33.25 |
-58.12 |
-16.88 |
3.34 |
49 |
83 |
-47.25 |
-31.88 |
5.62 |
3.34 |
49 |
84 |
57.75 |
-35.62 |
43.12 |
3.33 |
49 |
85 |
-29.75 |
28.12 |
39.38 |
3.32 |
49 |
86 |
-47.25 |
-46.88 |
-31.88 |
3.32 |
49 |
87 |
26.25 |
-54.38 |
-20.62 |
3.32 |
49 |
88 |
-33.25 |
31.88 |
46.88 |
3.32 |
49 |
89 |
-8.75 |
-58.12 |
-43.12 |
3.30 |
49 |
90 |
-33.25 |
-58.12 |
20.62 |
3.29 |
49 |
shoe
Contrast Plot
Cluster Table
Height control |
fpr |
α |
0.001 |
Threshold (computed) |
3.3 |
Cluster size threshold (voxels) |
0 |
Minimum distance (mm) |
8 |
Cluster ID |
X |
Y |
Z |
Peak Stat |
Cluster Size (mm3) |
1 |
22.75 |
-9.38 |
35.62 |
4.74 |
49 |
2 |
61.25 |
24.38 |
31.88 |
4.22 |
147 |
3 |
36.75 |
46.88 |
-16.88 |
3.95 |
49 |
4 |
50.75 |
-35.62 |
-35.62 |
3.83 |
49 |
5 |
22.75 |
-69.38 |
-28.12 |
3.82 |
49 |
6 |
19.25 |
-20.62 |
-28.12 |
3.81 |
49 |
7 |
19.25 |
73.12 |
20.62 |
3.76 |
49 |
8 |
-54.25 |
-65.62 |
16.88 |
3.70 |
49 |
9 |
-19.25 |
20.62 |
43.12 |
3.69 |
49 |
10 |
-47.25 |
-16.88 |
-24.38 |
3.66 |
49 |
11 |
-1.75 |
-28.12 |
-73.12 |
3.65 |
49 |
12 |
19.25 |
-28.12 |
-54.38 |
3.59 |
49 |
13 |
15.75 |
-24.38 |
-73.12 |
3.57 |
49 |
14 |
-68.25 |
-20.62 |
24.38 |
3.56 |
49 |
15 |
-68.25 |
-9.38 |
9.38 |
3.53 |
49 |
16 |
26.25 |
-46.88 |
-24.38 |
3.52 |
49 |
17 |
-1.75 |
-20.62 |
24.38 |
3.52 |
49 |
18 |
15.75 |
16.88 |
58.12 |
3.45 |
49 |
19 |
36.75 |
28.12 |
39.38 |
3.45 |
49 |
20 |
33.25 |
9.38 |
61.88 |
3.43 |
49 |
21 |
-12.25 |
1.88 |
-69.38 |
3.37 |
49 |
22 |
26.25 |
-61.88 |
13.12 |
3.36 |
49 |
23 |
-29.75 |
9.38 |
35.62 |
3.36 |
49 |
24 |
1.75 |
-24.38 |
-39.38 |
3.36 |
49 |
25 |
-12.25 |
39.38 |
65.62 |
3.36 |
49 |
26 |
12.25 |
5.62 |
31.88 |
3.33 |
49 |
27 |
64.75 |
-1.88 |
31.88 |
3.32 |
49 |
28 |
26.25 |
35.62 |
28.12 |
3.30 |
49 |
cat
Contrast Plot
Cluster Table
Height control |
fpr |
α |
0.001 |
Threshold (computed) |
3.3 |
Cluster size threshold (voxels) |
0 |
Minimum distance (mm) |
8 |
Cluster ID |
X |
Y |
Z |
Peak Stat |
Cluster Size (mm3) |
1 |
-12.25 |
-76.88 |
31.88 |
4.68 |
98 |
2 |
43.75 |
-5.62 |
16.88 |
4.53 |
196 |
3 |
-15.75 |
-20.62 |
-58.12 |
4.45 |
98 |
4 |
-40.25 |
-65.62 |
13.12 |
4.36 |
49 |
5 |
1.75 |
35.62 |
-13.12 |
4.29 |
49 |
6 |
-12.25 |
-58.12 |
-16.88 |
4.27 |
49 |
7 |
5.25 |
-61.88 |
-24.38 |
4.27 |
98 |
8 |
43.75 |
5.62 |
1.88 |
4.26 |
344 |
9 |
-1.75 |
50.62 |
-9.38 |
4.25 |
246 |
10 |
5.25 |
-24.38 |
-73.12 |
4.22 |
49 |
11 |
22.75 |
-61.88 |
-54.38 |
4.04 |
49 |
12 |
15.75 |
-16.88 |
46.88 |
4.02 |
49 |
13 |
36.75 |
9.38 |
-35.62 |
3.99 |
49 |
14 |
19.25 |
-31.88 |
-69.38 |
3.98 |
49 |
15 |
22.75 |
-24.38 |
-58.12 |
3.98 |
49 |
16 |
-64.75 |
-9.38 |
-24.38 |
3.98 |
49 |
17 |
36.75 |
69.38 |
5.62 |
3.91 |
98 |
18 |
12.25 |
-61.88 |
-31.88 |
3.86 |
98 |
19 |
1.75 |
28.12 |
-35.62 |
3.85 |
49 |
20 |
47.25 |
1.88 |
-46.88 |
3.82 |
49 |
21 |
8.75 |
-65.62 |
-24.38 |
3.82 |
49 |
22 |
-29.75 |
39.38 |
54.38 |
3.81 |
49 |
23 |
15.75 |
-31.88 |
-61.88 |
3.76 |
49 |
24 |
5.25 |
-80.62 |
9.38 |
3.75 |
49 |
25 |
43.75 |
24.38 |
9.38 |
3.72 |
49 |
26 |
40.25 |
-5.62 |
-5.62 |
3.70 |
49 |
27 |
50.75 |
28.12 |
24.38 |
3.70 |
49 |
28 |
22.75 |
-58.12 |
-61.88 |
3.70 |
49 |
29 |
-40.25 |
-46.88 |
16.88 |
3.66 |
49 |
30 |
5.25 |
43.12 |
50.62 |
3.63 |
49 |
31 |
-12.25 |
-73.12 |
-31.88 |
3.62 |
49 |
32 |
-26.25 |
-80.62 |
13.12 |
3.57 |
98 |
33 |
50.75 |
1.88 |
-24.38 |
3.57 |
49 |
34 |
-54.25 |
-46.88 |
5.62 |
3.57 |
98 |
35 |
-40.25 |
-69.38 |
35.62 |
3.53 |
49 |
36 |
36.75 |
28.12 |
-20.62 |
3.53 |
49 |
37 |
8.75 |
16.88 |
-16.88 |
3.53 |
49 |
38 |
5.25 |
20.62 |
50.62 |
3.53 |
49 |
39 |
-47.25 |
-31.88 |
-43.12 |
3.52 |
49 |
40 |
-40.25 |
-5.62 |
50.62 |
3.50 |
49 |
41 |
-5.25 |
-50.62 |
-13.12 |
3.50 |
49 |
42 |
-29.75 |
-46.88 |
5.62 |
3.48 |
49 |
43 |
29.75 |
1.88 |
-31.88 |
3.47 |
49 |
44 |
-8.75 |
-35.62 |
-24.38 |
3.44 |
49 |
45 |
61.25 |
-31.88 |
43.12 |
3.44 |
49 |
46 |
5.25 |
-31.88 |
-69.38 |
3.43 |
49 |
47 |
-22.75 |
65.62 |
39.38 |
3.42 |
98 |
48 |
36.75 |
28.12 |
43.12 |
3.38 |
147 |
49 |
-8.75 |
-46.88 |
-28.12 |
3.36 |
49 |
50 |
12.25 |
-39.38 |
-31.88 |
3.36 |
49 |
51 |
-8.75 |
-28.12 |
-61.88 |
3.35 |
49 |
52 |
61.25 |
-31.88 |
20.62 |
3.35 |
49 |
53 |
-40.25 |
-31.88 |
-58.12 |
3.34 |
49 |
54 |
40.25 |
-20.62 |
-39.38 |
3.32 |
49 |
55 |
5.25 |
-73.12 |
-20.62 |
3.32 |
49 |
56 |
-29.75 |
-20.62 |
-35.62 |
3.32 |
49 |
57 |
15.75 |
39.38 |
-20.62 |
3.31 |
49 |
58 |
-36.75 |
-50.62 |
-39.38 |
3.31 |
49 |
59 |
-47.25 |
-43.12 |
43.12 |
3.31 |
49 |
60 |
26.25 |
-65.62 |
13.12 |
3.30 |
49 |
scissors
Contrast Plot
Cluster Table
Height control |
fpr |
α |
0.001 |
Threshold (computed) |
3.3 |
Cluster size threshold (voxels) |
0 |
Minimum distance (mm) |
8 |
Cluster ID |
X |
Y |
Z |
Peak Stat |
Cluster Size (mm3) |
1 |
-50.75 |
20.62 |
-24.38 |
6.55 |
1132 |
2 |
-19.25 |
84.38 |
20.62 |
6.20 |
1476 |
2a |
-26.25 |
80.62 |
16.88 |
4.90 |
|
2b |
-15.75 |
76.88 |
31.88 |
4.42 |
|
3 |
-26.25 |
24.38 |
28.12 |
5.83 |
147 |
4 |
36.75 |
20.62 |
-31.88 |
5.58 |
246 |
5 |
29.75 |
5.62 |
-5.62 |
5.32 |
98 |
6 |
-12.25 |
20.62 |
-46.88 |
5.25 |
344 |
7 |
12.25 |
-35.62 |
-69.38 |
5.14 |
98 |
8 |
15.75 |
76.88 |
28.12 |
5.05 |
49 |
9 |
5.25 |
24.38 |
-46.88 |
5.04 |
393 |
10 |
-12.25 |
76.88 |
20.62 |
5.02 |
935 |
10a |
-5.25 |
84.38 |
1.88 |
4.38 |
|
10b |
-5.25 |
84.38 |
20.62 |
4.38 |
|
10c |
-5.25 |
80.62 |
13.12 |
4.22 |
|
11 |
-1.75 |
1.88 |
-61.88 |
5.02 |
295 |
12 |
-19.25 |
61.88 |
50.62 |
5.00 |
49 |
13 |
12.25 |
13.12 |
-43.12 |
4.98 |
49 |
14 |
33.25 |
5.62 |
-46.88 |
4.92 |
49 |
15 |
1.75 |
-28.12 |
-61.88 |
4.88 |
49 |
16 |
-54.25 |
-39.38 |
-31.88 |
4.79 |
49 |
17 |
-22.75 |
-54.38 |
-50.62 |
4.66 |
295 |
18 |
12.25 |
-61.88 |
-46.88 |
4.56 |
49 |
19 |
12.25 |
80.62 |
-5.62 |
4.49 |
49 |
20 |
36.75 |
28.12 |
-35.62 |
4.46 |
295 |
21 |
-26.25 |
-13.12 |
1.88 |
4.45 |
49 |
22 |
-15.75 |
-43.12 |
-46.88 |
4.42 |
98 |
23 |
-29.75 |
20.62 |
-46.88 |
4.41 |
98 |
24 |
-12.25 |
9.38 |
-58.12 |
4.41 |
98 |
25 |
26.25 |
-46.88 |
1.88 |
4.36 |
49 |
26 |
-5.25 |
80.62 |
31.88 |
4.32 |
196 |
27 |
15.75 |
-35.62 |
-73.12 |
4.32 |
49 |
28 |
50.75 |
24.38 |
-35.62 |
4.30 |
98 |
29 |
40.25 |
-58.12 |
-5.62 |
4.26 |
98 |
30 |
-19.25 |
31.88 |
-35.62 |
4.26 |
147 |
31 |
12.25 |
13.12 |
-50.62 |
4.26 |
344 |
32 |
-40.25 |
69.38 |
13.12 |
4.25 |
49 |
33 |
47.25 |
24.38 |
-1.88 |
4.23 |
49 |
34 |
1.75 |
1.88 |
31.88 |
4.22 |
147 |
35 |
1.75 |
13.12 |
-16.88 |
4.20 |
49 |
36 |
1.75 |
-1.88 |
-76.88 |
4.20 |
98 |
37 |
-40.25 |
-9.38 |
-5.62 |
4.17 |
49 |
38 |
15.75 |
88.12 |
16.88 |
4.16 |
147 |
39 |
-12.25 |
1.88 |
-28.12 |
4.15 |
49 |
40 |
15.75 |
-16.88 |
46.88 |
4.15 |
49 |
41 |
47.25 |
24.38 |
9.38 |
4.14 |
49 |
42 |
-5.25 |
-9.38 |
31.88 |
4.13 |
49 |
43 |
40.25 |
28.12 |
-43.12 |
4.12 |
49 |
44 |
1.75 |
76.88 |
16.88 |
4.11 |
196 |
45 |
50.75 |
31.88 |
-31.88 |
4.10 |
49 |
46 |
1.75 |
-5.62 |
-80.62 |
4.08 |
98 |
47 |
1.75 |
-28.12 |
-76.88 |
4.07 |
49 |
48 |
-54.25 |
9.38 |
-16.88 |
4.05 |
49 |
49 |
50.75 |
20.62 |
-1.88 |
4.05 |
49 |
50 |
-40.25 |
61.88 |
5.62 |
4.05 |
49 |
51 |
-26.25 |
-24.38 |
20.62 |
4.04 |
49 |
52 |
-47.25 |
-5.62 |
-28.12 |
4.03 |
49 |
53 |
-50.75 |
-9.38 |
-20.62 |
4.03 |
196 |
54 |
-22.75 |
-5.62 |
-20.62 |
4.01 |
49 |
55 |
-5.25 |
-28.12 |
-76.88 |
4.01 |
49 |
56 |
54.25 |
5.62 |
50.62 |
4.01 |
98 |
57 |
40.25 |
5.62 |
31.88 |
4.00 |
49 |
58 |
29.75 |
76.88 |
13.12 |
3.98 |
49 |
59 |
22.75 |
-54.38 |
-43.12 |
3.98 |
49 |
60 |
-26.25 |
-1.88 |
-9.38 |
3.96 |
98 |
61 |
50.75 |
50.62 |
20.62 |
3.93 |
49 |
62 |
-12.25 |
88.12 |
9.38 |
3.91 |
49 |
63 |
-36.75 |
-1.88 |
-20.62 |
3.91 |
147 |
64 |
-29.75 |
-69.38 |
9.38 |
3.91 |
98 |
65 |
47.25 |
-1.88 |
20.62 |
3.90 |
147 |
66 |
19.25 |
-16.88 |
-54.38 |
3.90 |
49 |
67 |
57.75 |
-24.38 |
5.62 |
3.89 |
49 |
68 |
-19.25 |
50.62 |
13.12 |
3.88 |
49 |
69 |
33.25 |
24.38 |
-43.12 |
3.88 |
98 |
70 |
12.25 |
80.62 |
35.62 |
3.87 |
98 |
71 |
-26.25 |
-80.62 |
-5.62 |
3.86 |
49 |
72 |
-26.25 |
31.88 |
-39.38 |
3.86 |
49 |
73 |
-68.25 |
-5.62 |
5.62 |
3.86 |
98 |
74 |
-36.75 |
65.62 |
20.62 |
3.85 |
98 |
75 |
-40.25 |
-16.88 |
-65.62 |
3.85 |
49 |
76 |
22.75 |
-58.12 |
-50.62 |
3.85 |
49 |
77 |
19.25 |
80.62 |
1.88 |
3.85 |
98 |
78 |
-5.25 |
1.88 |
-76.88 |
3.85 |
49 |
79 |
12.25 |
-61.88 |
9.38 |
3.84 |
49 |
80 |
-36.75 |
69.38 |
16.88 |
3.83 |
49 |
81 |
15.75 |
50.62 |
-9.38 |
3.83 |
49 |
82 |
33.25 |
-35.62 |
-35.62 |
3.83 |
49 |
83 |
22.75 |
-1.88 |
9.38 |
3.83 |
49 |
84 |
-5.25 |
5.62 |
-69.38 |
3.82 |
49 |
85 |
5.25 |
13.12 |
31.88 |
3.82 |
98 |
86 |
-33.25 |
-65.62 |
-16.88 |
3.82 |
49 |
87 |
-5.25 |
-16.88 |
-39.38 |
3.80 |
49 |
88 |
22.75 |
43.12 |
-9.38 |
3.80 |
49 |
89 |
-50.75 |
-13.12 |
5.62 |
3.80 |
49 |
90 |
43.75 |
-61.88 |
5.62 |
3.78 |
49 |
91 |
19.25 |
-1.88 |
-1.88 |
3.76 |
49 |
92 |
22.75 |
-35.62 |
-9.38 |
3.75 |
49 |
93 |
12.25 |
24.38 |
-35.62 |
3.75 |
98 |
94 |
-8.75 |
24.38 |
-35.62 |
3.74 |
49 |
95 |
-40.25 |
43.12 |
-31.88 |
3.74 |
49 |
96 |
40.25 |
-24.38 |
-35.62 |
3.73 |
49 |
97 |
-8.75 |
16.88 |
-43.12 |
3.72 |
49 |
98 |
15.75 |
88.12 |
9.38 |
3.72 |
98 |
99 |
29.75 |
-1.88 |
24.38 |
3.72 |
49 |
100 |
54.25 |
1.88 |
43.12 |
3.70 |
49 |
101 |
1.75 |
65.62 |
46.88 |
3.70 |
49 |
102 |
22.75 |
-20.62 |
-5.62 |
3.70 |
49 |
103 |
29.75 |
58.12 |
-16.88 |
3.69 |
49 |
104 |
-1.75 |
73.12 |
35.62 |
3.69 |
49 |
105 |
40.25 |
-39.38 |
58.12 |
3.68 |
49 |
106 |
26.25 |
-50.62 |
-54.38 |
3.68 |
49 |
107 |
-8.75 |
28.12 |
54.38 |
3.68 |
196 |
108 |
-22.75 |
-39.38 |
-54.38 |
3.67 |
49 |
109 |
-1.75 |
-35.62 |
-65.62 |
3.66 |
98 |
110 |
1.75 |
39.38 |
-16.88 |
3.65 |
49 |
111 |
8.75 |
-9.38 |
-76.88 |
3.65 |
49 |
112 |
33.25 |
-5.62 |
-1.88 |
3.64 |
98 |
113 |
-1.75 |
28.12 |
-39.38 |
3.64 |
49 |
114 |
1.75 |
80.62 |
24.38 |
3.62 |
98 |
115 |
19.25 |
-46.88 |
-35.62 |
3.62 |
49 |
116 |
1.75 |
-9.38 |
1.88 |
3.61 |
49 |
117 |
-47.25 |
24.38 |
20.62 |
3.61 |
49 |
118 |
36.75 |
24.38 |
-28.12 |
3.60 |
49 |
119 |
22.75 |
-43.12 |
-61.88 |
3.59 |
49 |
120 |
-22.75 |
58.12 |
-20.62 |
3.59 |
98 |
121 |
43.75 |
-31.88 |
-13.12 |
3.57 |
49 |
122 |
-22.75 |
54.38 |
-13.12 |
3.55 |
49 |
123 |
1.75 |
-5.62 |
-20.62 |
3.54 |
49 |
124 |
-22.75 |
39.38 |
31.88 |
3.54 |
49 |
125 |
-29.75 |
31.88 |
-9.38 |
3.53 |
49 |
126 |
57.75 |
16.88 |
16.88 |
3.53 |
49 |
127 |
15.75 |
-76.88 |
-16.88 |
3.52 |
49 |
128 |
15.75 |
46.88 |
-20.62 |
3.52 |
49 |
129 |
33.25 |
-39.38 |
24.38 |
3.52 |
49 |
130 |
-43.75 |
-24.38 |
35.62 |
3.52 |
49 |
131 |
-12.25 |
65.62 |
-9.38 |
3.52 |
49 |
132 |
-33.25 |
39.38 |
54.38 |
3.51 |
49 |
133 |
-26.25 |
16.88 |
28.12 |
3.51 |
49 |
134 |
29.75 |
-1.88 |
13.12 |
3.50 |
49 |
135 |
12.25 |
1.88 |
-69.38 |
3.50 |
49 |
136 |
19.25 |
54.38 |
50.62 |
3.49 |
49 |
137 |
8.75 |
76.88 |
16.88 |
3.49 |
49 |
138 |
-26.25 |
-28.12 |
31.88 |
3.49 |
49 |
139 |
29.75 |
-9.38 |
9.38 |
3.48 |
49 |
140 |
22.75 |
58.12 |
-5.62 |
3.48 |
49 |
141 |
-19.25 |
-20.62 |
-1.88 |
3.48 |
49 |
142 |
-12.25 |
-43.12 |
-13.12 |
3.48 |
49 |
143 |
-26.25 |
65.62 |
35.62 |
3.48 |
49 |
144 |
15.75 |
76.88 |
20.62 |
3.47 |
98 |
145 |
-5.25 |
-1.88 |
-28.12 |
3.47 |
49 |
146 |
-33.25 |
69.38 |
24.38 |
3.46 |
98 |
147 |
-19.25 |
-5.62 |
16.88 |
3.46 |
49 |
148 |
-26.25 |
61.88 |
-5.62 |
3.46 |
49 |
149 |
-22.75 |
69.38 |
35.62 |
3.46 |
49 |
150 |
29.75 |
-46.88 |
-61.88 |
3.46 |
49 |
151 |
-8.75 |
20.62 |
31.88 |
3.45 |
49 |
152 |
33.25 |
24.38 |
61.88 |
3.45 |
49 |
153 |
40.25 |
-1.88 |
61.88 |
3.44 |
98 |
154 |
-33.25 |
43.12 |
-13.12 |
3.44 |
49 |
155 |
54.25 |
35.62 |
35.62 |
3.44 |
49 |
156 |
22.75 |
-20.62 |
20.62 |
3.44 |
49 |
157 |
-19.25 |
31.88 |
-28.12 |
3.43 |
49 |
158 |
-61.25 |
-46.88 |
9.38 |
3.43 |
49 |
159 |
19.25 |
16.88 |
-46.88 |
3.43 |
49 |
160 |
-1.75 |
-46.88 |
-1.88 |
3.43 |
49 |
161 |
43.75 |
-9.38 |
-16.88 |
3.43 |
49 |
162 |
57.75 |
-31.88 |
46.88 |
3.42 |
49 |
163 |
-19.25 |
-1.88 |
-35.62 |
3.42 |
49 |
164 |
22.75 |
20.62 |
24.38 |
3.42 |
49 |
165 |
-19.25 |
9.38 |
-35.62 |
3.42 |
49 |
166 |
-22.75 |
20.62 |
-46.88 |
3.41 |
49 |
167 |
-57.75 |
-5.62 |
-1.88 |
3.41 |
49 |
168 |
-5.25 |
39.38 |
58.12 |
3.40 |
49 |
169 |
-47.25 |
-16.88 |
-13.12 |
3.40 |
49 |
170 |
-29.75 |
-13.12 |
-35.62 |
3.40 |
49 |
171 |
33.25 |
-39.38 |
-43.12 |
3.40 |
49 |
172 |
1.75 |
35.62 |
-24.38 |
3.40 |
49 |
173 |
29.75 |
9.38 |
16.88 |
3.39 |
49 |
174 |
15.75 |
-28.12 |
-54.38 |
3.38 |
49 |
175 |
22.75 |
-39.38 |
13.12 |
3.38 |
49 |
176 |
29.75 |
-20.62 |
-5.62 |
3.38 |
49 |
177 |
40.25 |
-43.12 |
-5.62 |
3.37 |
49 |
178 |
33.25 |
-39.38 |
-20.62 |
3.37 |
49 |
179 |
-26.25 |
9.38 |
20.62 |
3.37 |
49 |
180 |
50.75 |
-16.88 |
-13.12 |
3.36 |
49 |
181 |
-26.25 |
43.12 |
-28.12 |
3.36 |
49 |
182 |
15.75 |
-39.38 |
24.38 |
3.36 |
49 |
183 |
-12.25 |
1.88 |
9.38 |
3.35 |
49 |
184 |
26.25 |
-16.88 |
-35.62 |
3.35 |
49 |
185 |
33.25 |
5.62 |
16.88 |
3.35 |
49 |
186 |
-19.25 |
-1.88 |
-9.38 |
3.35 |
49 |
187 |
15.75 |
-50.62 |
46.88 |
3.35 |
49 |
188 |
-57.75 |
-9.38 |
-13.12 |
3.35 |
49 |
189 |
-15.75 |
-65.62 |
5.62 |
3.35 |
49 |
190 |
15.75 |
5.62 |
9.38 |
3.35 |
49 |
191 |
29.75 |
-1.88 |
1.88 |
3.35 |
49 |
192 |
8.75 |
1.88 |
24.38 |
3.35 |
49 |
193 |
-33.25 |
28.12 |
-39.38 |
3.34 |
49 |
194 |
26.25 |
1.88 |
24.38 |
3.34 |
49 |
195 |
-22.75 |
-88.12 |
-1.88 |
3.34 |
49 |
196 |
-29.75 |
-16.88 |
-1.88 |
3.34 |
49 |
197 |
33.25 |
-31.88 |
-43.12 |
3.34 |
49 |
198 |
-1.75 |
-13.12 |
31.88 |
3.33 |
49 |
199 |
40.25 |
13.12 |
-39.38 |
3.33 |
49 |
200 |
33.25 |
-20.62 |
43.12 |
3.33 |
49 |
201 |
22.75 |
-9.38 |
-5.62 |
3.32 |
49 |
202 |
29.75 |
-1.88 |
50.62 |
3.32 |
49 |
203 |
5.25 |
-1.88 |
5.62 |
3.32 |
49 |
204 |
-12.25 |
-50.62 |
-50.62 |
3.31 |
49 |
205 |
-15.75 |
1.88 |
28.12 |
3.31 |
49 |
206 |
-33.25 |
73.12 |
9.38 |
3.31 |
49 |
207 |
1.75 |
-1.88 |
-24.38 |
3.31 |
49 |
208 |
29.75 |
-50.62 |
-50.62 |
3.30 |
49 |
209 |
8.75 |
16.88 |
-39.38 |
3.30 |
49 |
210 |
-19.25 |
-20.62 |
-20.62 |
3.30 |
49 |
211 |
26.25 |
13.12 |
-39.38 |
3.30 |
49 |
212 |
50.75 |
-16.88 |
46.88 |
3.30 |
49 |
213 |
29.75 |
54.38 |
-5.62 |
3.29 |
49 |
Built using Nilearn.
Source code on GitHub.
File bugs & feature requests
here.
In a jupyter notebook, the report will be automatically inserted, as above.
We have several other ways to access the report:
.. code-block:: default
# report.save_as_html('report.html')
# report.open_in_browser()
Build the decoding pipeline
----------------------------
To define the decoding pipeline we use Decoder object, we choose :
* a prediction model, here a Support Vector Classifier, with a linear
kernel
* the mask to use, here a ventral temporal ROI in the visual cortex
* although it usually helps to decode better, z-maps time series don't
need to be rescaled to a 0 mean, variance of 1 so we use
standardize=False.
* we use univariate feature selection to reduce the dimension of the
problem keeping only 5% of voxels which are most informative.
* a cross-validation scheme, here we use LeaveOneGroupOut
cross-validation on the sessions which corresponds to a
leave-one-session-out
We fit directly this pipeline on the Niimgs outputs of the GLM, with
corresponding conditions labels and session labels (for the cross validation).
.. code-block:: default
from nilearn.decoding import Decoder
from sklearn.model_selection import LeaveOneGroupOut
decoder = Decoder(estimator='svc', mask=haxby_dataset.mask, standardize=False,
screening_percentile=5, cv=LeaveOneGroupOut())
decoder.fit(z_maps, conditions_label, groups=session_label)
# Return the corresponding mean prediction accuracy compared to chance
classification_accuracy = np.mean(list(decoder.cv_scores_.values()))
chance_level = 1. / len(np.unique(conditions))
print('Classification accuracy: {:.4f} / Chance level: {}'.format(
classification_accuracy, chance_level))
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Classification accuracy: 0.6890 / Chance level: 0.125
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 2 minutes 38.379 seconds)
.. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_glm_decoding.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/02_decoding/plot_haxby_glm_decoding.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_haxby_glm_decoding.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_haxby_glm_decoding.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_