.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_01_plotting_plot_haxby_masks.py:
Plot Haxby masks
=================
Small script to plot the masks of the Haxby dataset.
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_haxby_masks_001.png
:alt: plot haxby masks
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
First subject anatomical nifti image (3D) is at: /home/nicolas/nilearn_data/haxby2001/subj2/anat.nii.gz
First subject functional nifti image (4D) is at: /home/nicolas/nilearn_data/haxby2001/subj2/bold.nii.gz
/home/nicolas/GitRepos/nilearn-fork/nilearn/plotting/displays.py:101: UserWarning: No contour levels were found within the data range.
im = getattr(ax, type)(data_2d.copy(),
/home/nicolas/GitRepos/nilearn-fork/nilearn/plotting/displays.py:101: UserWarning: The following kwargs were not used by contour: 'contours'
im = getattr(ax, type)(data_2d.copy(),
|
.. code-block:: default
import matplotlib.pyplot as plt
from nilearn import datasets
haxby_dataset = datasets.fetch_haxby()
# print basic information on the dataset
print('First subject anatomical nifti image (3D) is at: %s' %
haxby_dataset.anat[0])
print('First subject functional nifti image (4D) is at: %s' %
haxby_dataset.func[0]) # 4D data
# Build the mean image because we have no anatomic data
from nilearn import image
func_filename = haxby_dataset.func[0]
mean_img = image.mean_img(func_filename)
z_slice = -14
fig = plt.figure(figsize=(4, 5.4), facecolor='k')
from nilearn.plotting import plot_anat, show
display = plot_anat(mean_img, display_mode='z', cut_coords=[z_slice],
figure=fig)
mask_vt_filename = haxby_dataset.mask_vt[0]
mask_house_filename = haxby_dataset.mask_house[0]
mask_face_filename = haxby_dataset.mask_face[0]
display.add_contours(mask_vt_filename, contours=1, antialiased=False,
linewidths=4., levels=[0], colors=['red'])
display.add_contours(mask_house_filename, contours=1, antialiased=False,
linewidths=4., levels=[0], colors=['blue'])
display.add_contours(mask_face_filename, contours=1, antialiased=False,
linewidths=4., levels=[0], colors=['limegreen'])
# We generate a legend using the trick described on
# http://matplotlib.sourceforge.net/users/legend_guide.httpml#using-proxy-artist
from matplotlib.patches import Rectangle
p_v = Rectangle((0, 0), 1, 1, fc="red")
p_h = Rectangle((0, 0), 1, 1, fc="blue")
p_f = Rectangle((0, 0), 1, 1, fc="limegreen")
plt.legend([p_v, p_h, p_f], ["vt", "house", "face"])
show()
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 4.300 seconds)
.. _sphx_glr_download_auto_examples_01_plotting_plot_haxby_masks.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/main?filepath=examples/auto_examples/01_plotting/plot_haxby_masks.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_haxby_masks.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_haxby_masks.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_