Note

This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

8.2.4. nilearn.datasets.fetch_atlas_msdl

nilearn.datasets.fetch_atlas_msdl(data_dir=None, url=None, resume=True, verbose=1)[source]

Download and load the MSDL brain atlas.

It can be downloaded at 1, and cited using 2. See also 3 for more information.

Parameters
data_dirstring, optional

Path of the data directory. Used to force data storage in a specified location. Default: None

urlstring, optional

Override download URL. Used for test only (or if you setup a mirror of the data).

resumebool, optional

Whether to resumed download of a partly-downloaded file. Default=True.

verboseint, optional

Verbosity level (0 means no message). Default=1.

Returns
datasklearn.datasets.base.Bunch

Dictionary-like object, the interest attributes are :

  • ‘maps’: str, path to nifti file containing regions definition.

  • ‘labels’: string list containing the labels of the regions.

  • ‘region_coords’: tuple list (x, y, z) containing coordinates of each region in MNI space.

  • ‘networks’: string list containing names of the networks.

  • ‘description’: description about the atlas.

References

1

Spatially constrained parcellation. https://team.inria.fr/parietal/files/2015/01/MSDL_rois.zip. Accessed: 2021-05-19.

2

Gael Varoquaux, Alexandre Gramfort, Fabian Pedregosa, Vincent Michel, and Bertrand Thirion. Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. In Information Processing in Medical Imaging, 562–573. Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

3

Gaël Varoquaux and R. Cameron Craddock. Learning and comparing functional connectomes across subjects. NeuroImage, 80:405–415, 2013. Mapping the Connectome. URL: https://www.sciencedirect.com/science/article/pii/S1053811913003340, doi:https://doi.org/10.1016/j.neuroimage.2013.04.007.