Note
Click here to download the full example code or to run this example in your browser via Binder
9.3.9. Decoding of a dataset after GLM fit for signal extraction¶
Full step-by-step example of fitting a GLM to perform a decoding experiment. We use the data from one subject of the Haxby dataset.
More specifically:
Download the Haxby dataset.
Extract the information to generate a glm representing the blocks of stimuli.
Analyze the decoding performance using a classifier.
To run this example, you must launch IPython via ipython
--matplotlib
in a terminal, or use the Jupyter notebook.
Contents
9.3.9.1. Fetch example Haxby dataset¶
We download the Haxby dataset This is a study of visual object category representation
# By default 2nd subject will be fetched
import numpy as np
import pandas as pd
from nilearn import datasets
haxby_dataset = datasets.fetch_haxby()
# repetition has to be known
TR = 2.5
9.3.9.2. Load the behavioral data¶
# Load target information as string and give a numerical identifier to each
behavioral = pd.read_csv(haxby_dataset.session_target[0], sep=' ')
conditions = behavioral['labels'].values
# Record these as an array of sessions
sessions = behavioral['chunks'].values
unique_sessions = behavioral['chunks'].unique()
# fMRI data: a unique file for each session
func_filename = haxby_dataset.func[0]
9.3.9.3. Build a proper event structure for each session¶
events = {}
# events will take the form of a dictionary of Dataframes, one per session
for session in unique_sessions:
# get the condition label per session
conditions_session = conditions[sessions == session]
# get the number of scans per session, then the corresponding
# vector of frame times
n_scans = len(conditions_session)
frame_times = TR * np.arange(n_scans)
# each event last the full TR
duration = TR * np.ones(n_scans)
# Define the events object
events_ = pd.DataFrame(
{'onset': frame_times, 'trial_type': conditions_session, 'duration': duration})
# remove the rest condition and insert into the dictionary
events[session] = events_[events_.trial_type != 'rest']
9.3.9.4. Instantiate and run FirstLevelModel¶
We generate a list of z-maps together with their session and condition index
z_maps = []
conditions_label = []
session_label = []
# Instantiate the glm
from nilearn.glm.first_level import FirstLevelModel
glm = FirstLevelModel(t_r=TR,
mask_img=haxby_dataset.mask,
high_pass=.008,
smoothing_fwhm=4,
memory='nilearn_cache')
9.3.9.5. Run the glm on data from each session¶
events[session].trial_type.unique()
from nilearn.image import index_img
for session in unique_sessions:
# grab the fmri data for that particular session
fmri_session = index_img(func_filename, sessions == session)
# fit the glm
glm.fit(fmri_session, events=events[session])
# set up contrasts: one per condition
conditions = events[session].trial_type.unique()
for condition_ in conditions:
z_maps.append(glm.compute_contrast(condition_))
conditions_label.append(condition_)
session_label.append(session)
Out:
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a81d3550>, <nibabel.nifti1.Nifti1Image object at 0x7fc6a81d3c10>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.114769, ..., -2.149296],
...,
[ 2.367151, ..., 0.779998]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.256013, ..., 0.308334]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a81d3c10>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.038572, ..., 0.855077]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a81d3c10>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.070285, ..., -1.222001]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a81d3c10>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.1724 , ..., 0.033508]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a81d3c10>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.96724 , ..., -1.474856]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a81d3c10>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.432136, ..., -1.197805]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a81d3c10>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.420626, ..., -0.443207]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a81d3c10>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.310409, ..., 0.196496]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a81d3c10>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6aad03c10>, <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f55dc0>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 12.660587, ..., -13.536042],
...,
[ -3.254408, ..., -33.842804]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.705774, ..., -0.934083]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f55dc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.476069, ..., -1.29404 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f55dc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.210752, ..., -1.441079]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f55dc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.341707, ..., 2.094528]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f55dc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.097247, ..., -0.496306]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f55dc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.118812, ..., 1.58503 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f55dc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.801345, ..., -1.648133]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f55dc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.621172, ..., -0.678871]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f55dc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a7f31280>, <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f06130>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 5.205584, ..., 26.587189],
...,
[-6.836576, ..., 10.676956]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.733742, ..., -0.435687]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f06130>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.502666, ..., 1.789333]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f06130>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.690828, ..., 0.731519]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f06130>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.403789, ..., 0.257657]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f06130>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.472767, ..., -1.160892]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f06130>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.07507 , ..., -2.203006]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f06130>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.445359, ..., -0.36161 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f06130>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.034083, ..., 0.35299 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f06130>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a7f93370>, <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3160>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-2.026206, ..., 5.974948],
...,
[ 2.616334, ..., 0.104535]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.596132, ..., -1.910225]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.217544, ..., -0.003551]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.337751, ..., 0.789979]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.161412, ..., -0.265537]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.538844, ..., -0.797649]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.589617, ..., -0.790328]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.306331, ..., -0.003053]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.20477 , ..., -0.804061]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a80fc970>, <nibabel.nifti1.Nifti1Image object at 0x7fc6a3b62280>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 53.033577, ..., -55.45955 ],
...,
[-51.57195 , ..., -55.994713]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.161983, ..., -0.068078]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3b62280>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.467058, ..., -0.494102]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3b62280>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.008358, ..., 0.250096]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3b62280>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.127065, ..., -0.241985]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3b62280>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.066426, ..., 0.493324]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3b62280>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.049242, ..., -1.008997]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3b62280>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.336253, ..., -0.596381]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3b62280>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.707037, ..., 1.358865]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3b62280>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a80e1ac0>, <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3820>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-27.150482, ..., -5.81308 ],
...,
[-30.204891, ..., 7.417917]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.197916, ..., 1.581644]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3820>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.576467, ..., 0.392603]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3820>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.969252, ..., 1.15444 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3820>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.716041, ..., 1.094486]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3820>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.280537, ..., 0.542739]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3820>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.331329, ..., -0.019244]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3820>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.298501, ..., -0.355821]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3820>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.232015, ..., -0.420629]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3820>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a7dbf9a0>, <nibabel.nifti1.Nifti1Image object at 0x7fc695c78160>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[129.51173 , ..., -15.279282],
...,
[-18.911755, ..., 21.839058]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.490124, ..., -0.665442]), <nibabel.nifti1.Nifti1Image object at 0x7fc695c78160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.374685, ..., -0.980248]), <nibabel.nifti1.Nifti1Image object at 0x7fc695c78160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.654133, ..., -0.288692]), <nibabel.nifti1.Nifti1Image object at 0x7fc695c78160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.244312, ..., -1.462072]), <nibabel.nifti1.Nifti1Image object at 0x7fc695c78160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.665202, ..., 1.793466]), <nibabel.nifti1.Nifti1Image object at 0x7fc695c78160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.036326, ..., 0.693956]), <nibabel.nifti1.Nifti1Image object at 0x7fc695c78160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.672634, ..., -0.24818 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc695c78160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.099764, ..., -1.722951]), <nibabel.nifti1.Nifti1Image object at 0x7fc695c78160>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a7d7fa00>, <nibabel.nifti1.Nifti1Image object at 0x7fc6a3d6eeb0>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-15.915996, ..., 22.07737 ],
...,
[-16.981215, ..., 3.372383]], dtype=float32),
array([[ 0. , ..., 1. ],
...,
[-0.259023, ..., 1. ]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.033872, ..., -0.317176]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3d6eeb0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.98478 , ..., -0.770334]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3d6eeb0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.127461, ..., 0.929068]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3d6eeb0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.489347, ..., -0.230229]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3d6eeb0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.673052, ..., 0.6757 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3d6eeb0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.260282, ..., -0.346342]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3d6eeb0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.775541, ..., 1.603123]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3d6eeb0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([3.391727, ..., 0.653312]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a3d6eeb0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a40f3610>, <nibabel.nifti1.Nifti1Image object at 0x7fc6a4009340>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.292987, ..., 18.392956],
...,
[-3.935719, ..., 0.602484]], dtype=float32),
array([[ 0. , ..., 1. ],
...,
[-0.259023, ..., 1. ]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.620911, ..., 2.309993]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a4009340>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.44548 , ..., 0.576334]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a4009340>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.483355, ..., -0.068969]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a4009340>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.166576, ..., 0.713549]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a4009340>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.612744, ..., 1.441012]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a4009340>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.254934, ..., -1.288018]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a4009340>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.134169, ..., -0.621367]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a4009340>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.234171, ..., -1.497943]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a4009340>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a81b8d00>, <nibabel.nifti1.Nifti1Image object at 0x7fc6aad0c0d0>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-5.223948, ..., -5.959582],
...,
[-7.677519, ..., 16.024363]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.01344 , ..., 1.283233]), <nibabel.nifti1.Nifti1Image object at 0x7fc6aad0c0d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.79114 , ..., 1.031069]), <nibabel.nifti1.Nifti1Image object at 0x7fc6aad0c0d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.583575, ..., 0.488828]), <nibabel.nifti1.Nifti1Image object at 0x7fc6aad0c0d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.265741, ..., -0.623721]), <nibabel.nifti1.Nifti1Image object at 0x7fc6aad0c0d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.20672, ..., 1.09668]), <nibabel.nifti1.Nifti1Image object at 0x7fc6aad0c0d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.045178, ..., 0.822339]), <nibabel.nifti1.Nifti1Image object at 0x7fc6aad0c0d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.463833, ..., -0.151504]), <nibabel.nifti1.Nifti1Image object at 0x7fc6aad0c0d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.230311, ..., 0.198537]), <nibabel.nifti1.Nifti1Image object at 0x7fc6aad0c0d0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a7d9f130>, <nibabel.nifti1.Nifti1Image object at 0x7fc6a823aac0>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-19.66533 , ..., -6.299562],
...,
[-24.647343, ..., 2.331865]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.080165, ..., -3.497239]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a823aac0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-3.083184, ..., -3.071235]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a823aac0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.724401, ..., -2.892927]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a823aac0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.044506, ..., 0.285176]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a823aac0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.257372, ..., 1.802962]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a823aac0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.485481, ..., 0.284696]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a823aac0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.032135, ..., -1.290339]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a823aac0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.417132, ..., -1.258094]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a823aac0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc6a8005be0>, <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f3daf0>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'runs': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-1.095605, ..., 16.449202],
...,
[ 2.59974 , ..., -2.179998]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.545625, ..., -1.041515]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f3daf0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.152042, ..., 1.145641]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f3daf0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.55236 , ..., 0.696758]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f3daf0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.684509, ..., 0.226524]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f3daf0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.423531, ..., -0.641954]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f3daf0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.726779, ..., 0.687642]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f3daf0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.809306, ..., 0.496974]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f3daf0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.116436, ..., -0.811166]), <nibabel.nifti1.Nifti1Image object at 0x7fc6a7f3daf0>)
___________________________________________________________unmask - 0.1s, 0.0min
9.3.9.6. Generating a report¶
Since we have already computed the FirstLevelModel and have the contrast, we can quickly create a summary report.
from nilearn.image import mean_img
from nilearn.reporting import make_glm_report
mean_img_ = mean_img(func_filename)
report = make_glm_report(glm,
contrasts=conditions,
bg_img=mean_img_,
)
report # This report can be viewed in a notebook
Statistical Report for bottle, cat, chair, face, house, scissors, scrambledpix, shoe
First Level Model
Model details:
drift_model | cosine |
---|---|
drift_order | 1 |
fir_delays | [0] |
high_pass (Hz) | 0.008 |
hrf_model | glover |
noise_model | ar1 |
scaling_axis | 0 |
signal_scaling | True |
slice_time_ref | 0 |
smoothing_fwhm | 4 |
standardize | False |
subject_label | None |
t_r (s) | 2.5 |
target_affine | None |
target_shape | None |
Design Matrix:
Contrasts
Mask
Stat Maps with Cluster Tables
bottle
Contrast Plot
Cluster Table
Height control | fpr |
---|---|
α | 0.001 |
Threshold (computed) | 3.3 |
Cluster size threshold (voxels) | 0 |
Minimum distance (mm) | 8 |
Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
---|---|---|---|---|---|
1 | -36.75 | -46.88 | -46.88 | 6.61 | 147 |
2 | -54.25 | 13.12 | 5.62 | 6.47 | 98 |
3 | -1.75 | -39.38 | 13.12 | 6.45 | 196 |
4 | -57.75 | -39.38 | 9.38 | 6.17 | 246 |
5 | -40.25 | -35.62 | -35.62 | 6.12 | 393 |
6 | 33.25 | -43.12 | -43.12 | 6.11 | 1722 |
6a | 22.75 | -35.62 | -43.12 | 5.78 | |
6b | 15.75 | -46.88 | -39.38 | 4.33 | |
6c | 12.25 | -46.88 | -46.88 | 4.11 | |
7 | -19.25 | -24.38 | -43.12 | 5.99 | 492 |
7a | -19.25 | -31.88 | -39.38 | 5.47 | |
8 | 29.75 | -20.62 | -24.38 | 5.98 | 393 |
9 | -43.75 | 28.12 | -9.38 | 5.96 | 196 |
10 | 8.75 | -50.62 | -35.62 | 5.88 | 492 |
11 | 19.25 | -54.38 | -43.12 | 5.78 | 1476 |
11a | 12.25 | -58.12 | -28.12 | 5.44 | |
11b | 8.75 | -58.12 | -39.38 | 4.44 | |
12 | 40.25 | 16.88 | -20.62 | 5.73 | 49 |
13 | 22.75 | -46.88 | -61.88 | 5.70 | 492 |
13a | 22.75 | -58.12 | -61.88 | 5.38 | |
14 | 26.25 | -46.88 | -46.88 | 5.69 | 147 |
15 | -1.75 | -50.62 | -39.38 | 5.66 | 147 |
16 | -26.25 | -16.88 | -24.38 | 5.64 | 147 |
17 | 12.25 | -28.12 | -73.12 | 5.60 | 246 |
18 | -50.75 | 35.62 | -16.88 | 5.58 | 246 |
19 | -33.25 | -73.12 | 31.88 | 5.56 | 49 |
20 | -15.75 | -28.12 | -43.12 | 5.55 | 49 |
21 | 19.25 | -76.88 | -13.12 | 5.50 | 492 |
22 | -12.25 | -24.38 | -76.88 | 5.46 | 196 |
23 | -47.25 | -13.12 | 13.12 | 5.42 | 98 |
24 | 26.25 | -20.62 | -13.12 | 5.41 | 344 |
25 | -29.75 | 9.38 | -28.12 | 5.38 | 246 |
26 | -57.75 | -16.88 | 1.88 | 5.34 | 98 |
27 | 22.75 | -43.12 | 9.38 | 5.33 | 246 |
28 | -47.25 | -61.88 | -5.62 | 5.29 | 98 |
29 | -40.25 | -39.38 | 31.88 | 5.27 | 344 |
29a | -29.75 | -39.38 | 31.88 | 4.36 | |
30 | -19.25 | -50.62 | -39.38 | 5.26 | 147 |
31 | -12.25 | 5.62 | -16.88 | 5.25 | 49 |
32 | -29.75 | -43.12 | -50.62 | 5.24 | 393 |
33 | 8.75 | -91.88 | 5.62 | 5.24 | 49 |
34 | 1.75 | 50.62 | -16.88 | 5.19 | 344 |
35 | -50.75 | -50.62 | 20.62 | 5.17 | 147 |
36 | 43.75 | -50.62 | -5.62 | 5.17 | 935 |
36a | 47.25 | -43.12 | -1.88 | 4.41 | |
36b | 50.75 | -50.62 | -5.62 | 4.15 | |
37 | 26.25 | 9.38 | -16.88 | 5.16 | 196 |
38 | 5.25 | -76.88 | 24.38 | 5.15 | 49 |
39 | -29.75 | -84.38 | 1.88 | 5.14 | 49 |
40 | 26.25 | -69.38 | -16.88 | 5.14 | 246 |
41 | -54.25 | -31.88 | -13.12 | 5.14 | 49 |
42 | -47.25 | -9.38 | 5.62 | 5.10 | 295 |
43 | 33.25 | 5.62 | -13.12 | 5.10 | 246 |
44 | -40.25 | 24.38 | -9.38 | 5.08 | 49 |
45 | 12.25 | -84.38 | -28.12 | 5.07 | 98 |
46 | -29.75 | -80.62 | -24.38 | 5.05 | 49 |
47 | -54.25 | -46.88 | -5.62 | 5.02 | 98 |
48 | 26.25 | 31.88 | -31.88 | 5.02 | 147 |
49 | 12.25 | -13.12 | -28.12 | 5.02 | 98 |
50 | 29.75 | 1.88 | -9.38 | 5.01 | 98 |
51 | -47.25 | -39.38 | -20.62 | 5.01 | 885 |
51a | -50.75 | -39.38 | -9.38 | 4.50 | |
52 | -19.25 | -58.12 | -9.38 | 5.00 | 196 |
53 | 33.25 | 20.62 | -20.62 | 5.00 | 98 |
54 | 5.25 | -61.88 | -20.62 | 4.97 | 295 |
55 | -33.25 | 13.12 | 28.12 | 4.93 | 246 |
56 | -47.25 | -28.12 | 13.12 | 4.90 | 147 |
57 | 1.75 | -43.12 | -1.88 | 4.90 | 49 |
58 | -22.75 | -58.12 | -46.88 | 4.89 | 147 |
59 | -15.75 | -76.88 | 28.12 | 4.88 | 196 |
60 | 33.25 | 9.38 | -24.38 | 4.88 | 98 |
61 | -61.25 | -5.62 | 20.62 | 4.87 | 147 |
62 | -40.25 | -20.62 | -31.88 | 4.87 | 49 |
63 | -50.75 | 16.88 | -1.88 | 4.86 | 147 |
64 | -15.75 | -50.62 | -1.88 | 4.86 | 49 |
65 | 40.25 | -35.62 | -24.38 | 4.86 | 2067 |
65a | 43.75 | -28.12 | -9.38 | 4.70 | |
65b | 40.25 | -20.62 | -13.12 | 4.57 | |
65c | 47.25 | -35.62 | -20.62 | 4.13 | |
66 | 22.75 | -20.62 | -35.62 | 4.84 | 98 |
67 | 36.75 | 28.12 | -35.62 | 4.84 | 49 |
68 | -15.75 | 16.88 | 43.12 | 4.82 | 147 |
69 | -43.75 | 50.62 | 16.88 | 4.82 | 49 |
70 | 12.25 | -65.62 | -24.38 | 4.81 | 246 |
71 | -47.25 | -28.12 | 5.62 | 4.81 | 98 |
72 | 1.75 | -58.12 | -24.38 | 4.80 | 98 |
73 | 29.75 | -50.62 | -50.62 | 4.77 | 196 |
74 | 19.25 | -43.12 | -20.62 | 4.75 | 98 |
75 | 36.75 | -65.62 | -13.12 | 4.75 | 344 |
76 | -1.75 | -58.12 | -54.38 | 4.73 | 49 |
77 | 19.25 | 35.62 | 28.12 | 4.72 | 49 |
78 | -40.25 | -61.88 | -16.88 | 4.70 | 295 |
79 | -22.75 | 1.88 | -1.88 | 4.69 | 49 |
80 | 22.75 | -16.88 | -9.38 | 4.69 | 98 |
81 | 33.25 | 31.88 | -9.38 | 4.69 | 98 |
82 | -8.75 | -46.88 | -65.62 | 4.68 | 246 |
83 | 5.25 | -73.12 | 16.88 | 4.67 | 344 |
83a | -1.75 | -65.62 | 16.88 | 3.95 | |
84 | 22.75 | -20.62 | -28.12 | 4.67 | 295 |
84a | 12.25 | -20.62 | -31.88 | 4.46 | |
85 | -15.75 | -1.88 | -69.38 | 4.65 | 49 |
86 | -47.25 | 35.62 | 16.88 | 4.65 | 196 |
87 | 12.25 | 20.62 | 35.62 | 4.64 | 49 |
88 | -26.25 | -20.62 | -13.12 | 4.64 | 98 |
89 | -29.75 | 13.12 | -13.12 | 4.63 | 147 |
90 | -15.75 | -31.88 | -61.88 | 4.63 | 49 |
91 | -47.25 | -54.38 | -9.38 | 4.62 | 344 |
92 | 50.75 | 43.12 | -5.62 | 4.61 | 49 |
93 | 40.25 | 31.88 | 13.12 | 4.59 | 49 |
94 | 12.25 | -54.38 | -46.88 | 4.59 | 98 |
95 | -15.75 | -39.38 | -50.62 | 4.58 | 49 |
96 | -5.25 | -31.88 | 58.12 | 4.57 | 49 |
97 | -1.75 | 58.12 | 13.12 | 4.57 | 49 |
98 | 22.75 | -35.62 | 54.38 | 4.57 | 246 |
99 | -12.25 | -58.12 | -16.88 | 4.56 | 49 |
100 | -12.25 | -13.12 | -46.88 | 4.55 | 246 |
101 | -19.25 | -76.88 | -28.12 | 4.55 | 147 |
102 | 8.75 | -20.62 | -13.12 | 4.55 | 147 |
103 | 1.75 | -76.88 | 35.62 | 4.55 | 49 |
104 | -36.75 | -76.88 | 1.88 | 4.55 | 246 |
105 | -61.25 | -20.62 | 13.12 | 4.54 | 49 |
106 | -1.75 | -9.38 | -20.62 | 4.54 | 49 |
107 | -5.25 | -13.12 | -69.38 | 4.53 | 49 |
108 | -57.75 | -9.38 | 9.38 | 4.53 | 295 |
108a | -61.25 | -1.88 | 9.38 | 4.20 | |
109 | -47.25 | -28.12 | 43.12 | 4.52 | 49 |
110 | -47.25 | 16.88 | 5.62 | 4.52 | 98 |
111 | 8.75 | -16.88 | 46.88 | 4.52 | 49 |
112 | -12.25 | -58.12 | -46.88 | 4.52 | 49 |
113 | -36.75 | 43.12 | 24.38 | 4.51 | 98 |
114 | -22.75 | -76.88 | -16.88 | 4.51 | 49 |
115 | -29.75 | -58.12 | -9.38 | 4.51 | 49 |
116 | 1.75 | 13.12 | 9.38 | 4.50 | 49 |
117 | 15.75 | -1.88 | -16.88 | 4.50 | 196 |
118 | 33.25 | -9.38 | -58.12 | 4.50 | 98 |
119 | 50.75 | -5.62 | 5.62 | 4.49 | 49 |
120 | 33.25 | -50.62 | -20.62 | 4.49 | 246 |
121 | -50.75 | 9.38 | -16.88 | 4.48 | 196 |
122 | 40.25 | 35.62 | -1.88 | 4.48 | 49 |
123 | 8.75 | -50.62 | -20.62 | 4.48 | 49 |
124 | -1.75 | -46.88 | 1.88 | 4.46 | 98 |
125 | -47.25 | 20.62 | -13.12 | 4.46 | 49 |
126 | 15.75 | 9.38 | 43.12 | 4.46 | 98 |
127 | -40.25 | -65.62 | -5.62 | 4.45 | 49 |
128 | -15.75 | 9.38 | -20.62 | 4.45 | 98 |
129 | 12.25 | -9.38 | 13.12 | 4.45 | 49 |
130 | 50.75 | 1.88 | 43.12 | 4.44 | 98 |
131 | -26.25 | -54.38 | 46.88 | 4.43 | 98 |
132 | -15.75 | -76.88 | 20.62 | 4.43 | 49 |
133 | -50.75 | -16.88 | 24.38 | 4.42 | 49 |
134 | -50.75 | -5.62 | -5.62 | 4.42 | 49 |
135 | 40.25 | 5.62 | -24.38 | 4.42 | 49 |
136 | -50.75 | 9.38 | 9.38 | 4.41 | 49 |
137 | -50.75 | 16.88 | -13.12 | 4.41 | 147 |
138 | -40.25 | 9.38 | -28.12 | 4.41 | 147 |
139 | 19.25 | -1.88 | 28.12 | 4.38 | 49 |
140 | 33.25 | 24.38 | 39.38 | 4.38 | 49 |
141 | -15.75 | 24.38 | -9.38 | 4.38 | 49 |
142 | 22.75 | -61.88 | -46.88 | 4.38 | 147 |
143 | -40.25 | -46.88 | 1.88 | 4.38 | 147 |
144 | -12.25 | 54.38 | -9.38 | 4.37 | 98 |
145 | 26.25 | 28.12 | -20.62 | 4.37 | 98 |
146 | 57.75 | 35.62 | 28.12 | 4.37 | 98 |
147 | 5.25 | -88.12 | -1.88 | 4.37 | 49 |
148 | -15.75 | 13.12 | 50.62 | 4.36 | 98 |
149 | -36.75 | 28.12 | 31.88 | 4.36 | 246 |
150 | 68.25 | -13.12 | -9.38 | 4.36 | 246 |
150a | 68.25 | -1.88 | -9.38 | 4.29 | |
151 | 1.75 | -5.62 | -13.12 | 4.35 | 49 |
152 | -47.25 | -24.38 | -16.88 | 4.35 | 98 |
153 | -26.25 | 13.12 | 46.88 | 4.35 | 49 |
154 | 5.25 | -35.62 | -58.12 | 4.35 | 98 |
155 | 36.75 | -73.12 | 5.62 | 4.34 | 98 |
156 | -33.25 | -9.38 | -13.12 | 4.34 | 344 |
157 | -15.75 | -9.38 | 28.12 | 4.34 | 295 |
158 | -19.25 | -54.38 | -61.88 | 4.33 | 196 |
159 | -8.75 | 5.62 | -24.38 | 4.33 | 49 |
160 | 19.25 | -35.62 | 69.38 | 4.32 | 49 |
161 | -29.75 | -80.62 | -9.38 | 4.32 | 49 |
162 | 19.25 | -9.38 | 20.62 | 4.32 | 49 |
163 | -1.75 | -1.88 | 1.88 | 4.32 | 196 |
164 | -15.75 | -54.38 | 43.12 | 4.31 | 49 |
165 | -40.25 | -28.12 | -20.62 | 4.31 | 49 |
166 | 19.25 | -31.88 | 16.88 | 4.31 | 49 |
167 | 15.75 | -1.88 | -1.88 | 4.31 | 49 |
168 | -15.75 | -16.88 | 24.38 | 4.30 | 98 |
169 | -36.75 | 58.12 | 35.62 | 4.29 | 49 |
170 | 12.25 | -80.62 | 13.12 | 4.29 | 147 |
171 | -1.75 | -24.38 | 9.38 | 4.29 | 49 |
172 | -1.75 | -54.38 | -9.38 | 4.28 | 98 |
173 | -43.75 | 43.12 | -28.12 | 4.28 | 98 |
174 | 5.25 | -58.12 | -54.38 | 4.28 | 49 |
175 | 54.25 | -24.38 | -5.62 | 4.28 | 344 |
176 | -57.75 | -31.88 | -5.62 | 4.28 | 49 |
177 | 15.75 | 50.62 | 58.12 | 4.27 | 98 |
178 | 36.75 | -61.88 | -5.62 | 4.27 | 49 |
179 | 33.25 | -50.62 | -28.12 | 4.27 | 49 |
180 | -5.25 | 31.88 | -20.62 | 4.26 | 147 |
181 | 15.75 | -35.62 | 31.88 | 4.26 | 98 |
182 | -47.25 | -65.62 | 1.88 | 4.26 | 196 |
183 | -54.25 | -20.62 | -24.38 | 4.25 | 49 |
184 | 26.25 | -80.62 | -9.38 | 4.25 | 49 |
185 | 22.75 | 16.88 | 5.62 | 4.24 | 147 |
186 | 5.25 | -65.62 | -13.12 | 4.23 | 196 |
187 | -47.25 | 24.38 | 20.62 | 4.23 | 98 |
188 | -47.25 | -58.12 | 13.12 | 4.23 | 98 |
189 | 40.25 | 9.38 | -20.62 | 4.23 | 98 |
190 | 19.25 | 28.12 | 31.88 | 4.23 | 49 |
191 | 12.25 | 50.62 | -1.88 | 4.23 | 98 |
192 | 47.25 | -54.38 | -16.88 | 4.23 | 49 |
193 | 12.25 | 61.88 | 5.62 | 4.22 | 49 |
194 | 19.25 | -9.38 | 5.62 | 4.22 | 49 |
195 | -57.75 | -31.88 | 24.38 | 4.22 | 98 |
196 | -19.25 | -20.62 | -35.62 | 4.21 | 98 |
197 | 19.25 | -84.38 | -20.62 | 4.21 | 49 |
198 | 12.25 | 43.12 | -16.88 | 4.21 | 49 |
199 | -1.75 | -9.38 | -46.88 | 4.21 | 49 |
200 | 15.75 | -24.38 | -35.62 | 4.21 | 246 |
201 | -5.25 | -24.38 | -20.62 | 4.20 | 147 |
202 | -1.75 | -50.62 | -1.88 | 4.20 | 49 |
203 | 15.75 | -73.12 | -31.88 | 4.20 | 49 |
204 | -47.25 | -28.12 | 28.12 | 4.20 | 49 |
205 | 36.75 | -31.88 | -9.38 | 4.20 | 246 |
206 | 12.25 | 5.62 | 43.12 | 4.19 | 49 |
207 | -1.75 | 76.88 | 5.62 | 4.19 | 49 |
208 | -29.75 | 20.62 | -24.38 | 4.18 | 49 |
209 | 47.25 | -54.38 | -1.88 | 4.18 | 49 |
210 | 1.75 | -5.62 | -54.38 | 4.18 | 49 |
211 | 40.25 | -58.12 | 5.62 | 4.17 | 98 |
212 | 26.25 | 5.62 | 16.88 | 4.17 | 246 |
213 | 19.25 | -5.62 | 43.12 | 4.17 | 98 |
214 | -22.75 | -69.38 | -13.12 | 4.16 | 196 |
215 | -1.75 | -58.12 | -28.12 | 4.16 | 98 |
216 | 19.25 | 65.62 | 9.38 | 4.16 | 98 |
217 | -61.25 | -16.88 | 9.38 | 4.16 | 49 |
218 | 36.75 | 43.12 | -28.12 | 4.15 | 49 |
219 | -1.75 | -39.38 | 1.88 | 4.15 | 98 |
220 | 12.25 | 1.88 | 28.12 | 4.15 | 147 |
221 | -15.75 | -20.62 | -58.12 | 4.15 | 49 |
222 | 29.75 | -28.12 | -24.38 | 4.15 | 49 |
223 | 19.25 | 16.88 | 28.12 | 4.15 | 49 |
224 | 40.25 | -35.62 | -43.12 | 4.15 | 49 |
225 | -22.75 | -50.62 | 54.38 | 4.15 | 49 |
226 | -22.75 | 16.88 | 5.62 | 4.15 | 49 |
227 | 5.25 | -80.62 | -1.88 | 4.14 | 49 |
228 | -36.75 | 20.62 | 35.62 | 4.14 | 246 |
229 | -26.25 | -73.12 | -35.62 | 4.14 | 98 |
230 | -43.75 | 24.38 | -1.88 | 4.14 | 98 |
231 | -8.75 | 9.38 | 24.38 | 4.13 | 196 |
232 | 8.75 | 20.62 | -24.38 | 4.13 | 147 |
233 | -57.75 | 5.62 | 13.12 | 4.13 | 98 |
234 | 26.25 | -5.62 | -1.88 | 4.12 | 49 |
235 | -54.25 | 1.88 | 13.12 | 4.12 | 49 |
236 | -33.25 | -31.88 | -65.62 | 4.12 | 98 |
237 | -8.75 | -46.88 | -31.88 | 4.12 | 49 |
238 | -1.75 | -50.62 | -24.38 | 4.12 | 147 |
239 | -12.25 | 54.38 | 54.38 | 4.11 | 98 |
240 | -47.25 | 46.88 | 20.62 | 4.11 | 49 |
241 | -15.75 | -1.88 | 16.88 | 4.10 | 49 |
242 | -29.75 | 24.38 | 13.12 | 4.10 | 98 |
243 | -57.75 | -46.88 | -1.88 | 4.10 | 246 |
244 | -50.75 | -20.62 | 9.38 | 4.10 | 98 |
245 | 19.25 | -13.12 | 28.12 | 4.10 | 49 |
246 | 22.75 | 46.88 | -16.88 | 4.10 | 49 |
247 | 19.25 | -39.38 | -13.12 | 4.09 | 49 |
248 | -19.25 | 65.62 | 39.38 | 4.09 | 49 |
249 | -1.75 | -9.38 | -5.62 | 4.09 | 49 |
250 | -8.75 | -39.38 | -31.88 | 4.08 | 49 |
251 | -40.25 | -16.88 | -50.62 | 4.08 | 49 |
252 | -43.75 | -39.38 | -16.88 | 4.07 | 147 |
253 | 19.25 | 13.12 | -1.88 | 4.07 | 98 |
254 | 22.75 | 5.62 | -1.88 | 4.07 | 49 |
255 | -8.75 | -39.38 | -39.38 | 4.06 | 442 |
255a | -12.25 | -46.88 | -43.12 | 3.77 | |
256 | -19.25 | 61.88 | 5.62 | 4.06 | 49 |
257 | 54.25 | -20.62 | 39.38 | 4.06 | 49 |
258 | 54.25 | -9.38 | 20.62 | 4.06 | 147 |
259 | 22.75 | -69.38 | 1.88 | 4.06 | 147 |
260 | -19.25 | -5.62 | -24.38 | 4.04 | 393 |
261 | -1.75 | 1.88 | 13.12 | 4.04 | 49 |
262 | -40.25 | 16.88 | 24.38 | 4.03 | 98 |
263 | 33.25 | 5.62 | 28.12 | 4.03 | 49 |
264 | -36.75 | 43.12 | 1.88 | 4.02 | 147 |
265 | 19.25 | -69.38 | -13.12 | 4.02 | 49 |
266 | 12.25 | -9.38 | 5.62 | 4.02 | 49 |
267 | 12.25 | -88.12 | 5.62 | 4.02 | 98 |
268 | -26.25 | -76.88 | 35.62 | 4.02 | 49 |
269 | -47.25 | -43.12 | 9.38 | 4.02 | 147 |
270 | -50.75 | 39.38 | 9.38 | 4.02 | 49 |
271 | 33.25 | -24.38 | -13.12 | 4.01 | 49 |
272 | 40.25 | -43.12 | -28.12 | 4.01 | 49 |
273 | 29.75 | -24.38 | -16.88 | 4.01 | 49 |
274 | 26.25 | -20.62 | -65.62 | 4.00 | 98 |
275 | -43.75 | 20.62 | 20.62 | 4.00 | 49 |
276 | -15.75 | -73.12 | -13.12 | 4.00 | 49 |
277 | -1.75 | 13.12 | -20.62 | 3.99 | 98 |
278 | 57.75 | -39.38 | 5.62 | 3.99 | 49 |
279 | -29.75 | -65.62 | -20.62 | 3.99 | 49 |
280 | -19.25 | -50.62 | 16.88 | 3.99 | 49 |
281 | 5.25 | -61.88 | -46.88 | 3.98 | 49 |
282 | 22.75 | 31.88 | 9.38 | 3.98 | 49 |
283 | -19.25 | -65.62 | -20.62 | 3.98 | 49 |
284 | 15.75 | -16.88 | -58.12 | 3.98 | 49 |
285 | 19.25 | -13.12 | -28.12 | 3.98 | 98 |
286 | -47.25 | -13.12 | -54.38 | 3.97 | 98 |
287 | -47.25 | -39.38 | 16.88 | 3.97 | 49 |
288 | 1.75 | -1.88 | 31.88 | 3.97 | 98 |
289 | 36.75 | -39.38 | -69.38 | 3.97 | 49 |
290 | -1.75 | -35.62 | -61.88 | 3.96 | 98 |
291 | -8.75 | 39.38 | 5.62 | 3.96 | 49 |
292 | 26.25 | 20.62 | -24.38 | 3.96 | 98 |
293 | -5.25 | -84.38 | -20.62 | 3.96 | 49 |
294 | 8.75 | 76.88 | 35.62 | 3.95 | 147 |
295 | -22.75 | 31.88 | -24.38 | 3.95 | 49 |
296 | -26.25 | 46.88 | 5.62 | 3.95 | 147 |
297 | -22.75 | -9.38 | 13.12 | 3.95 | 49 |
298 | -33.25 | 13.12 | 13.12 | 3.94 | 98 |
299 | 5.25 | -43.12 | -9.38 | 3.94 | 49 |
300 | -47.25 | -13.12 | 35.62 | 3.93 | 49 |
301 | -68.25 | -24.38 | 1.88 | 3.93 | 147 |
302 | -8.75 | -54.38 | -31.88 | 3.93 | 49 |
303 | -54.25 | -28.12 | -16.88 | 3.92 | 49 |
304 | 50.75 | -54.38 | -9.38 | 3.92 | 49 |
305 | 68.25 | -31.88 | 9.38 | 3.91 | 196 |
306 | 12.25 | -1.88 | -69.38 | 3.91 | 98 |
307 | 19.25 | 16.88 | 16.88 | 3.91 | 147 |
308 | -33.25 | -16.88 | -5.62 | 3.91 | 49 |
309 | 5.25 | -28.12 | -9.38 | 3.91 | 49 |
310 | -5.25 | 46.88 | 54.38 | 3.90 | 98 |
311 | -43.75 | 16.88 | 58.12 | 3.90 | 49 |
312 | -33.25 | 1.88 | -16.88 | 3.90 | 147 |
313 | 15.75 | 88.12 | 9.38 | 3.90 | 98 |
314 | 5.25 | -65.62 | 54.38 | 3.90 | 147 |
315 | -64.75 | -13.12 | -24.38 | 3.90 | 49 |
316 | 29.75 | -43.12 | -58.12 | 3.90 | 49 |
317 | 1.75 | -43.12 | -16.88 | 3.90 | 295 |
317a | 12.25 | -39.38 | -13.12 | 3.81 | |
318 | -47.25 | -58.12 | -28.12 | 3.90 | 49 |
319 | 33.25 | 5.62 | 35.62 | 3.89 | 98 |
320 | 50.75 | -13.12 | 5.62 | 3.89 | 49 |
321 | 19.25 | -24.38 | 16.88 | 3.89 | 49 |
322 | -33.25 | -69.38 | 39.38 | 3.89 | 49 |
323 | 15.75 | -73.12 | -20.62 | 3.89 | 49 |
324 | 64.75 | -43.12 | 5.62 | 3.89 | 49 |
325 | 15.75 | -46.88 | 20.62 | 3.88 | 49 |
326 | -36.75 | -31.88 | -46.88 | 3.88 | 49 |
327 | -12.25 | -20.62 | -61.88 | 3.88 | 49 |
328 | -15.75 | -73.12 | 39.38 | 3.88 | 98 |
329 | -43.75 | 50.62 | 28.12 | 3.87 | 49 |
330 | 12.25 | -13.12 | 31.88 | 3.87 | 98 |
331 | 19.25 | -84.38 | 24.38 | 3.87 | 49 |
332 | -5.25 | -46.88 | -16.88 | 3.87 | 147 |
333 | -8.75 | -65.62 | -43.12 | 3.87 | 49 |
334 | 1.75 | -58.12 | 9.38 | 3.87 | 49 |
335 | -47.25 | 1.88 | -28.12 | 3.87 | 49 |
336 | 8.75 | 46.88 | -5.62 | 3.87 | 49 |
337 | 26.25 | -80.62 | 1.88 | 3.87 | 49 |
338 | -33.25 | 35.62 | -24.38 | 3.86 | 98 |
339 | -19.25 | -13.12 | 61.88 | 3.86 | 49 |
340 | 12.25 | -35.62 | 73.12 | 3.86 | 98 |
341 | 43.75 | 31.88 | 5.62 | 3.86 | 49 |
342 | -57.75 | 1.88 | -13.12 | 3.86 | 98 |
343 | 8.75 | 13.12 | 50.62 | 3.85 | 98 |
344 | -26.25 | 5.62 | -13.12 | 3.85 | 49 |
345 | 8.75 | -24.38 | 9.38 | 3.85 | 49 |
346 | -12.25 | -20.62 | -46.88 | 3.85 | 49 |
347 | -26.25 | 1.88 | 43.12 | 3.85 | 98 |
348 | 12.25 | 24.38 | 61.88 | 3.85 | 49 |
349 | -47.25 | -61.88 | 20.62 | 3.85 | 49 |
350 | 19.25 | -58.12 | -13.12 | 3.85 | 49 |
351 | -22.75 | -5.62 | -1.88 | 3.85 | 49 |
352 | 26.25 | -61.88 | 31.88 | 3.85 | 49 |
353 | -29.75 | 35.62 | -9.38 | 3.85 | 49 |
354 | 47.25 | 13.12 | -20.62 | 3.85 | 49 |
355 | 1.75 | -9.38 | -50.62 | 3.85 | 49 |
356 | -15.75 | -50.62 | -31.88 | 3.84 | 196 |
357 | -12.25 | -31.88 | -50.62 | 3.84 | 196 |
358 | 50.75 | 50.62 | -1.88 | 3.84 | 49 |
359 | 29.75 | -50.62 | 54.38 | 3.83 | 147 |
360 | 61.25 | 1.88 | 24.38 | 3.83 | 49 |
361 | 1.75 | -31.88 | 1.88 | 3.82 | 49 |
362 | 36.75 | -54.38 | -20.62 | 3.82 | 49 |
363 | 26.25 | -16.88 | -58.12 | 3.82 | 49 |
364 | -15.75 | -46.88 | -5.62 | 3.81 | 49 |
365 | 47.25 | 20.62 | 5.62 | 3.81 | 49 |
366 | 22.75 | -28.12 | 69.38 | 3.81 | 98 |
367 | 40.25 | -20.62 | 20.62 | 3.81 | 49 |
368 | -43.75 | -65.62 | 24.38 | 3.81 | 49 |
369 | -19.25 | -61.88 | 20.62 | 3.81 | 49 |
370 | 15.75 | 16.88 | -16.88 | 3.80 | 49 |
371 | 29.75 | -31.88 | 39.38 | 3.80 | 147 |
372 | -12.25 | 46.88 | 28.12 | 3.80 | 49 |
373 | 12.25 | 69.38 | 5.62 | 3.80 | 49 |
374 | 15.75 | -20.62 | -20.62 | 3.80 | 49 |
375 | 22.75 | -24.38 | 1.88 | 3.79 | 49 |
376 | -29.75 | -20.62 | -69.38 | 3.79 | 49 |
377 | -47.25 | -1.88 | -20.62 | 3.79 | 49 |
378 | 43.75 | -69.38 | -1.88 | 3.79 | 49 |
379 | 5.25 | -28.12 | 73.12 | 3.79 | 49 |
380 | 19.25 | 35.62 | 1.88 | 3.78 | 98 |
381 | 47.25 | 13.12 | 5.62 | 3.78 | 98 |
382 | -15.75 | -5.62 | 61.88 | 3.78 | 98 |
383 | -8.75 | 84.38 | 20.62 | 3.77 | 147 |
384 | 26.25 | 24.38 | 13.12 | 3.77 | 98 |
385 | 19.25 | -9.38 | -5.62 | 3.77 | 49 |
386 | 15.75 | -16.88 | 5.62 | 3.77 | 49 |
387 | -1.75 | -28.12 | 58.12 | 3.76 | 49 |
388 | -29.75 | -1.88 | -1.88 | 3.75 | 49 |
389 | 26.25 | 1.88 | 13.12 | 3.75 | 49 |
390 | 29.75 | -58.12 | -46.88 | 3.74 | 49 |
391 | -40.25 | 35.62 | 31.88 | 3.74 | 49 |
392 | 36.75 | 50.62 | 1.88 | 3.74 | 98 |
393 | -1.75 | 80.62 | 1.88 | 3.74 | 49 |
394 | -57.75 | -9.38 | 16.88 | 3.74 | 147 |
395 | 40.25 | -9.38 | -31.88 | 3.74 | 49 |
396 | 1.75 | 24.38 | 31.88 | 3.73 | 49 |
397 | 33.25 | 43.12 | 35.62 | 3.73 | 49 |
398 | 43.75 | 9.38 | -39.38 | 3.73 | 49 |
399 | 26.25 | 13.12 | 9.38 | 3.73 | 49 |
400 | 33.25 | -9.38 | -9.38 | 3.73 | 49 |
401 | 40.25 | -28.12 | -1.88 | 3.73 | 49 |
402 | 22.75 | -76.88 | -35.62 | 3.73 | 98 |
403 | -8.75 | -46.88 | -24.38 | 3.73 | 49 |
404 | 1.75 | -20.62 | -35.62 | 3.73 | 49 |
405 | 19.25 | 54.38 | 1.88 | 3.73 | 49 |
406 | -26.25 | -31.88 | 16.88 | 3.72 | 49 |
407 | 47.25 | 31.88 | -24.38 | 3.72 | 49 |
408 | -54.25 | 13.12 | 20.62 | 3.72 | 147 |
409 | -33.25 | -43.12 | -61.88 | 3.72 | 49 |
410 | 19.25 | -16.88 | 16.88 | 3.72 | 49 |
411 | -19.25 | -84.38 | 1.88 | 3.72 | 49 |
412 | 47.25 | 16.88 | -39.38 | 3.72 | 49 |
413 | 40.25 | -31.88 | 54.38 | 3.71 | 98 |
414 | 61.25 | -31.88 | 39.38 | 3.71 | 49 |
415 | -54.25 | -24.38 | -39.38 | 3.71 | 49 |
416 | 26.25 | -20.62 | 65.62 | 3.71 | 49 |
417 | 36.75 | -73.12 | -9.38 | 3.71 | 49 |
418 | 29.75 | -1.88 | -20.62 | 3.71 | 49 |
419 | 15.75 | -31.88 | -50.62 | 3.71 | 49 |
420 | -15.75 | 5.62 | 65.62 | 3.71 | 49 |
421 | 1.75 | 9.38 | -16.88 | 3.70 | 49 |
422 | -22.75 | -20.62 | -31.88 | 3.70 | 49 |
423 | 8.75 | -73.12 | 35.62 | 3.70 | 49 |
424 | 36.75 | -54.38 | -28.12 | 3.70 | 49 |
425 | 43.75 | -39.38 | -1.88 | 3.70 | 49 |
426 | -33.25 | -35.62 | -9.38 | 3.70 | 49 |
427 | -50.75 | 28.12 | 46.88 | 3.69 | 49 |
428 | -15.75 | -43.12 | 1.88 | 3.69 | 49 |
429 | -1.75 | -43.12 | -31.88 | 3.69 | 98 |
430 | 50.75 | -16.88 | 28.12 | 3.68 | 49 |
431 | -15.75 | 20.62 | -43.12 | 3.68 | 98 |
432 | 43.75 | -5.62 | -13.12 | 3.68 | 49 |
433 | 29.75 | -16.88 | -61.88 | 3.68 | 49 |
434 | 57.75 | -20.62 | 28.12 | 3.68 | 49 |
435 | -47.25 | 46.88 | 28.12 | 3.68 | 49 |
436 | 15.75 | -20.62 | 73.12 | 3.68 | 49 |
437 | 1.75 | 65.62 | -16.88 | 3.68 | 98 |
438 | -22.75 | 13.12 | -24.38 | 3.67 | 49 |
439 | -33.25 | 16.88 | 50.62 | 3.67 | 98 |
440 | -15.75 | -43.12 | -43.12 | 3.67 | 98 |
441 | -12.25 | -9.38 | -24.38 | 3.67 | 49 |
442 | -1.75 | 20.62 | -16.88 | 3.67 | 98 |
443 | -26.25 | -28.12 | -31.88 | 3.67 | 49 |
444 | -15.75 | -69.38 | 28.12 | 3.66 | 49 |
445 | -47.25 | 9.38 | -9.38 | 3.66 | 49 |
446 | -15.75 | -1.88 | -31.88 | 3.66 | 49 |
447 | -29.75 | -1.88 | -24.38 | 3.66 | 98 |
448 | 26.25 | 1.88 | -13.12 | 3.66 | 49 |
449 | 33.25 | -24.38 | -58.12 | 3.66 | 49 |
450 | -40.25 | -58.12 | 9.38 | 3.66 | 98 |
451 | 1.75 | 20.62 | -39.38 | 3.65 | 98 |
452 | 47.25 | 16.88 | 39.38 | 3.65 | 49 |
453 | -26.25 | -35.62 | 54.38 | 3.65 | 49 |
454 | 22.75 | -16.88 | 43.12 | 3.65 | 49 |
455 | 12.25 | 24.38 | -39.38 | 3.65 | 49 |
456 | -1.75 | -16.88 | -28.12 | 3.64 | 49 |
457 | 33.25 | -39.38 | -58.12 | 3.64 | 49 |
458 | 26.25 | -20.62 | 20.62 | 3.64 | 49 |
459 | 19.25 | 5.62 | -13.12 | 3.64 | 49 |
460 | 33.25 | 43.12 | 24.38 | 3.63 | 49 |
461 | 19.25 | -9.38 | 35.62 | 3.63 | 49 |
462 | -54.25 | -20.62 | -9.38 | 3.63 | 49 |
463 | -5.25 | -39.38 | 5.62 | 3.63 | 49 |
464 | 22.75 | -54.38 | 61.88 | 3.62 | 49 |
465 | 19.25 | -35.62 | -20.62 | 3.62 | 147 |
466 | -22.75 | -80.62 | 1.88 | 3.62 | 49 |
467 | 40.25 | -35.62 | 50.62 | 3.62 | 49 |
468 | 22.75 | -1.88 | 5.62 | 3.62 | 49 |
469 | 43.75 | -69.38 | 9.38 | 3.61 | 98 |
470 | 33.25 | -58.12 | -16.88 | 3.61 | 49 |
471 | 8.75 | -65.62 | 20.62 | 3.61 | 49 |
472 | 26.25 | -9.38 | 13.12 | 3.61 | 98 |
473 | 1.75 | 65.62 | -9.38 | 3.61 | 49 |
474 | -12.25 | 88.12 | 16.88 | 3.61 | 49 |
475 | -47.25 | 61.88 | 1.88 | 3.61 | 49 |
476 | -26.25 | 13.12 | 13.12 | 3.61 | 49 |
477 | -33.25 | -1.88 | 13.12 | 3.61 | 49 |
478 | -8.75 | -61.88 | -46.88 | 3.61 | 49 |
479 | 40.25 | 28.12 | -39.38 | 3.61 | 49 |
480 | 43.75 | 24.38 | -5.62 | 3.61 | 49 |
481 | -50.75 | -58.12 | 1.88 | 3.61 | 49 |
482 | 26.25 | -76.88 | -16.88 | 3.60 | 49 |
483 | -1.75 | -9.38 | -28.12 | 3.60 | 49 |
484 | -5.25 | -54.38 | -54.38 | 3.60 | 49 |
485 | -47.25 | -9.38 | 43.12 | 3.60 | 49 |
486 | -22.75 | 43.12 | -28.12 | 3.59 | 49 |
487 | -36.75 | -16.88 | -46.88 | 3.59 | 49 |
488 | 19.25 | -31.88 | -16.88 | 3.58 | 49 |
489 | 47.25 | 39.38 | 13.12 | 3.58 | 98 |
490 | 29.75 | 16.88 | 35.62 | 3.58 | 49 |
491 | 22.75 | 46.88 | 13.12 | 3.58 | 49 |
492 | -29.75 | -80.62 | 20.62 | 3.58 | 49 |
493 | 68.25 | -28.12 | 16.88 | 3.57 | 49 |
494 | -19.25 | 43.12 | -1.88 | 3.57 | 49 |
495 | 19.25 | -24.38 | -39.38 | 3.57 | 49 |
496 | -8.75 | -9.38 | -20.62 | 3.57 | 49 |
497 | 26.25 | -80.62 | -28.12 | 3.57 | 49 |
498 | 15.75 | 20.62 | 43.12 | 3.56 | 49 |
499 | 19.25 | -46.88 | 31.88 | 3.56 | 49 |
500 | 22.75 | 73.12 | 5.62 | 3.56 | 49 |
501 | 50.75 | -43.12 | 9.38 | 3.56 | 49 |
502 | -57.75 | -24.38 | 5.62 | 3.56 | 49 |
503 | -1.75 | -9.38 | 31.88 | 3.56 | 49 |
504 | -15.75 | -50.62 | 39.38 | 3.56 | 49 |
505 | -57.75 | 39.38 | 16.88 | 3.56 | 98 |
506 | 12.25 | -9.38 | 50.62 | 3.56 | 49 |
507 | -12.25 | -13.12 | -73.12 | 3.55 | 98 |
508 | -26.25 | -61.88 | 31.88 | 3.55 | 49 |
509 | -33.25 | 39.38 | 54.38 | 3.55 | 49 |
510 | 54.25 | 1.88 | 35.62 | 3.55 | 49 |
511 | 29.75 | -31.88 | -31.88 | 3.55 | 49 |
512 | -33.25 | 65.62 | 20.62 | 3.55 | 49 |
513 | -54.25 | -9.38 | -5.62 | 3.54 | 98 |
514 | 36.75 | 50.62 | -16.88 | 3.54 | 49 |
515 | 15.75 | 28.12 | -39.38 | 3.54 | 49 |
516 | 1.75 | -1.88 | -20.62 | 3.53 | 49 |
517 | 12.25 | -65.62 | 1.88 | 3.53 | 49 |
518 | 29.75 | 65.62 | 43.12 | 3.53 | 49 |
519 | 47.25 | -35.62 | 16.88 | 3.53 | 49 |
520 | -40.25 | -50.62 | 28.12 | 3.53 | 49 |
521 | 33.25 | -28.12 | 65.62 | 3.53 | 49 |
522 | 5.25 | 5.62 | -69.38 | 3.53 | 49 |
523 | 26.25 | -58.12 | -13.12 | 3.53 | 49 |
524 | -1.75 | -1.88 | -5.62 | 3.52 | 49 |
525 | -1.75 | -46.88 | -65.62 | 3.52 | 49 |
526 | 12.25 | -54.38 | -54.38 | 3.52 | 49 |
527 | -5.25 | 43.12 | -16.88 | 3.52 | 49 |
528 | 12.25 | -9.38 | -24.38 | 3.52 | 49 |
529 | -50.75 | -1.88 | 16.88 | 3.52 | 49 |
530 | 12.25 | -35.62 | 9.38 | 3.52 | 49 |
531 | 36.75 | 35.62 | 16.88 | 3.52 | 147 |
532 | 19.25 | 20.62 | 20.62 | 3.52 | 49 |
533 | -15.75 | -69.38 | -43.12 | 3.52 | 49 |
534 | -33.25 | -58.12 | -1.88 | 3.52 | 49 |
535 | -40.25 | -69.38 | 31.88 | 3.52 | 49 |
536 | -54.25 | -13.12 | 13.12 | 3.51 | 98 |
537 | 8.75 | 28.12 | -24.38 | 3.51 | 49 |
538 | 36.75 | -24.38 | -31.88 | 3.50 | 49 |
539 | -36.75 | -13.12 | 9.38 | 3.50 | 49 |
540 | -54.25 | -20.62 | -50.62 | 3.50 | 49 |
541 | 36.75 | 20.62 | 31.88 | 3.50 | 49 |
542 | 8.75 | -76.88 | 9.38 | 3.50 | 49 |
543 | -47.25 | -24.38 | -5.62 | 3.49 | 49 |
544 | -5.25 | -61.88 | 20.62 | 3.49 | 49 |
545 | -36.75 | 61.88 | 9.38 | 3.49 | 49 |
546 | 15.75 | 76.88 | 35.62 | 3.49 | 49 |
547 | -50.75 | -16.88 | -13.12 | 3.49 | 98 |
548 | 5.25 | -73.12 | -16.88 | 3.49 | 49 |
549 | 15.75 | 28.12 | -5.62 | 3.49 | 49 |
550 | 19.25 | -28.12 | -24.38 | 3.49 | 49 |
551 | 19.25 | -50.62 | -73.12 | 3.49 | 49 |
552 | -36.75 | 35.62 | -13.12 | 3.49 | 49 |
553 | 1.75 | -16.88 | -24.38 | 3.49 | 49 |
554 | -29.75 | 35.62 | -1.88 | 3.48 | 49 |
555 | 12.25 | -84.38 | -5.62 | 3.48 | 49 |
556 | 33.25 | -35.62 | -5.62 | 3.48 | 49 |
557 | 50.75 | 39.38 | -9.38 | 3.48 | 49 |
558 | 22.75 | -5.62 | 20.62 | 3.48 | 49 |
559 | -50.75 | 46.88 | 9.38 | 3.48 | 98 |
560 | 54.25 | 1.88 | -31.88 | 3.48 | 49 |
561 | 22.75 | -9.38 | -50.62 | 3.48 | 49 |
562 | 40.25 | -31.88 | -58.12 | 3.48 | 49 |
563 | 40.25 | -76.88 | -9.38 | 3.47 | 49 |
564 | -36.75 | -31.88 | 20.62 | 3.47 | 49 |
565 | 36.75 | 1.88 | 20.62 | 3.47 | 49 |
566 | 40.25 | -9.38 | 1.88 | 3.47 | 49 |
567 | 22.75 | 13.12 | 35.62 | 3.47 | 98 |
568 | 33.25 | 5.62 | 50.62 | 3.47 | 49 |
569 | -50.75 | 5.62 | -9.38 | 3.47 | 49 |
570 | 40.25 | -35.62 | -1.88 | 3.47 | 49 |
571 | -50.75 | -9.38 | -13.12 | 3.46 | 49 |
572 | -29.75 | 24.38 | 5.62 | 3.46 | 49 |
573 | -26.25 | -35.62 | -9.38 | 3.46 | 49 |
574 | -15.75 | -16.88 | -28.12 | 3.46 | 98 |
575 | -47.25 | -50.62 | 5.62 | 3.46 | 49 |
576 | -36.75 | -69.38 | 5.62 | 3.46 | 49 |
577 | 26.25 | -65.62 | 46.88 | 3.45 | 49 |
578 | 22.75 | 5.62 | 5.62 | 3.45 | 98 |
579 | 19.25 | -5.62 | 13.12 | 3.45 | 49 |
580 | -5.25 | 9.38 | 9.38 | 3.45 | 98 |
581 | -33.25 | 1.88 | 31.88 | 3.45 | 49 |
582 | -19.25 | -50.62 | -46.88 | 3.45 | 49 |
583 | -1.75 | -16.88 | -58.12 | 3.45 | 49 |
584 | 36.75 | 24.38 | -13.12 | 3.45 | 49 |
585 | -1.75 | -35.62 | -13.12 | 3.45 | 49 |
586 | -15.75 | 9.38 | 35.62 | 3.45 | 147 |
587 | -43.75 | -35.62 | -9.38 | 3.45 | 49 |
588 | 22.75 | -9.38 | 43.12 | 3.45 | 49 |
589 | 33.25 | 50.62 | 24.38 | 3.45 | 49 |
590 | 1.75 | -65.62 | -43.12 | 3.45 | 49 |
591 | -29.75 | 16.88 | -5.62 | 3.44 | 49 |
592 | 43.75 | -31.88 | -39.38 | 3.44 | 49 |
593 | 26.25 | 9.38 | 24.38 | 3.44 | 49 |
594 | -54.25 | 24.38 | 24.38 | 3.44 | 49 |
595 | 43.75 | 1.88 | -1.88 | 3.44 | 49 |
596 | 29.75 | -16.88 | 58.12 | 3.44 | 49 |
597 | 54.25 | -16.88 | 1.88 | 3.44 | 98 |
598 | -36.75 | -69.38 | 13.12 | 3.44 | 49 |
599 | -5.25 | -43.12 | 69.38 | 3.44 | 49 |
600 | 15.75 | -50.62 | 9.38 | 3.43 | 49 |
601 | -26.25 | -31.88 | -58.12 | 3.43 | 49 |
602 | 15.75 | 1.88 | 35.62 | 3.43 | 49 |
603 | -29.75 | -43.12 | 58.12 | 3.43 | 49 |
604 | -1.75 | 43.12 | -20.62 | 3.43 | 49 |
605 | -19.25 | -65.62 | 9.38 | 3.43 | 49 |
606 | 12.25 | -35.62 | -61.88 | 3.43 | 49 |
607 | -33.25 | -9.38 | -46.88 | 3.43 | 49 |
608 | -1.75 | -16.88 | 24.38 | 3.43 | 49 |
609 | 47.25 | 28.12 | -39.38 | 3.43 | 49 |
610 | -36.75 | 16.88 | 1.88 | 3.43 | 49 |
611 | 47.25 | -9.38 | 5.62 | 3.42 | 49 |
612 | -19.25 | 1.88 | 58.12 | 3.42 | 49 |
613 | -26.25 | -24.38 | -5.62 | 3.42 | 49 |
614 | 36.75 | -31.88 | 13.12 | 3.42 | 49 |
615 | 12.25 | 50.62 | 9.38 | 3.42 | 49 |
616 | 8.75 | -50.62 | -5.62 | 3.41 | 49 |
617 | -33.25 | -35.62 | 46.88 | 3.41 | 49 |
618 | 19.25 | 43.12 | -5.62 | 3.41 | 49 |
619 | 12.25 | -1.88 | 24.38 | 3.41 | 49 |
620 | 22.75 | 39.38 | 20.62 | 3.40 | 49 |
621 | -1.75 | -39.38 | -16.88 | 3.40 | 49 |
622 | -15.75 | -1.88 | 1.88 | 3.40 | 49 |
623 | -54.25 | -16.88 | -5.62 | 3.40 | 49 |
624 | 1.75 | -84.38 | -16.88 | 3.40 | 49 |
625 | -47.25 | 43.12 | 9.38 | 3.40 | 49 |
626 | 5.25 | -9.38 | -20.62 | 3.40 | 49 |
627 | -57.75 | 1.88 | 20.62 | 3.40 | 49 |
628 | -43.75 | 13.12 | 16.88 | 3.40 | 98 |
629 | 5.25 | 80.62 | 31.88 | 3.40 | 49 |
630 | -64.75 | -35.62 | -1.88 | 3.40 | 49 |
631 | -1.75 | -43.12 | -9.38 | 3.40 | 49 |
632 | -54.25 | -9.38 | 20.62 | 3.40 | 49 |
633 | 1.75 | -69.38 | 46.88 | 3.40 | 49 |
634 | -12.25 | -5.62 | -20.62 | 3.39 | 49 |
635 | -8.75 | 43.12 | 24.38 | 3.39 | 49 |
636 | 12.25 | -9.38 | 43.12 | 3.39 | 49 |
637 | 12.25 | -35.62 | -16.88 | 3.39 | 49 |
638 | 50.75 | -16.88 | 35.62 | 3.39 | 49 |
639 | -5.25 | 1.88 | -58.12 | 3.39 | 49 |
640 | 12.25 | -35.62 | 65.62 | 3.39 | 49 |
641 | 33.25 | -13.12 | 65.62 | 3.38 | 49 |
642 | 19.25 | -69.38 | 20.62 | 3.38 | 49 |
643 | 19.25 | -31.88 | -54.38 | 3.38 | 49 |
644 | 29.75 | -39.38 | -54.38 | 3.38 | 49 |
645 | -54.25 | -35.62 | -5.62 | 3.37 | 49 |
646 | -47.25 | -16.88 | -24.38 | 3.37 | 49 |
647 | -36.75 | 9.38 | 54.38 | 3.37 | 49 |
648 | 50.75 | -50.62 | 9.38 | 3.37 | 49 |
649 | -26.25 | -5.62 | 65.62 | 3.37 | 49 |
650 | -33.25 | -39.38 | -28.12 | 3.36 | 49 |
651 | 33.25 | 43.12 | -16.88 | 3.36 | 49 |
652 | 43.75 | -58.12 | -1.88 | 3.36 | 49 |
653 | -47.25 | 16.88 | -24.38 | 3.36 | 49 |
654 | -19.25 | 58.12 | 39.38 | 3.36 | 49 |
655 | -40.25 | -5.62 | 35.62 | 3.36 | 49 |
656 | -36.75 | 61.88 | 16.88 | 3.36 | 49 |
657 | -1.75 | -28.12 | 20.62 | 3.35 | 98 |
658 | -8.75 | -54.38 | 9.38 | 3.35 | 49 |
659 | 12.25 | -69.38 | 5.62 | 3.35 | 49 |
660 | -19.25 | -43.12 | 31.88 | 3.35 | 98 |
661 | -1.75 | -76.88 | 1.88 | 3.35 | 49 |
662 | 33.25 | -20.62 | -9.38 | 3.35 | 49 |
663 | -12.25 | 20.62 | 73.12 | 3.35 | 49 |
664 | -8.75 | 13.12 | -13.12 | 3.35 | 49 |
665 | 61.25 | -35.62 | 35.62 | 3.35 | 49 |
666 | 43.75 | -9.38 | 46.88 | 3.34 | 49 |
667 | 1.75 | 28.12 | -5.62 | 3.34 | 49 |
668 | 47.25 | 5.62 | -1.88 | 3.34 | 98 |
669 | 15.75 | -5.62 | 28.12 | 3.34 | 49 |
670 | 15.75 | -13.12 | -73.12 | 3.34 | 49 |
671 | 54.25 | 1.88 | 9.38 | 3.34 | 49 |
672 | 22.75 | 9.38 | 46.88 | 3.34 | 49 |
673 | 40.25 | -5.62 | -9.38 | 3.33 | 49 |
674 | 61.25 | 5.62 | 31.88 | 3.33 | 49 |
675 | 29.75 | -1.88 | -54.38 | 3.33 | 49 |
676 | 1.75 | -9.38 | -16.88 | 3.33 | 49 |
677 | 19.25 | -13.12 | 73.12 | 3.33 | 49 |
678 | -12.25 | 16.88 | 20.62 | 3.33 | 49 |
679 | 15.75 | 46.88 | 46.88 | 3.33 | 49 |
680 | -43.75 | -61.88 | 9.38 | 3.33 | 49 |
681 | 47.25 | -20.62 | 20.62 | 3.33 | 49 |
682 | -5.25 | -61.88 | 54.38 | 3.33 | 49 |
683 | -1.75 | -69.38 | -13.12 | 3.32 | 49 |
684 | 50.75 | -20.62 | -43.12 | 3.32 | 49 |
685 | 54.25 | -39.38 | -24.38 | 3.32 | 49 |
686 | 29.75 | -43.12 | -20.62 | 3.32 | 49 |
687 | -12.25 | -76.88 | -9.38 | 3.32 | 49 |
688 | -15.75 | 20.62 | 20.62 | 3.32 | 49 |
689 | -33.25 | 9.38 | 16.88 | 3.32 | 49 |
690 | -29.75 | 9.38 | 61.88 | 3.31 | 49 |
691 | 40.25 | 13.12 | -46.88 | 3.31 | 49 |
692 | 1.75 | -58.12 | -13.12 | 3.31 | 49 |
693 | 1.75 | 1.88 | -16.88 | 3.31 | 49 |
694 | 12.25 | -50.62 | 39.38 | 3.31 | 49 |
695 | -36.75 | 5.62 | -9.38 | 3.31 | 49 |
696 | 26.25 | 16.88 | -20.62 | 3.31 | 49 |
697 | 12.25 | -61.88 | 16.88 | 3.31 | 49 |
698 | 22.75 | -50.62 | 35.62 | 3.31 | 49 |
699 | 19.25 | -46.88 | -5.62 | 3.31 | 49 |
700 | 12.25 | -50.62 | -1.88 | 3.30 | 49 |
701 | -12.25 | -16.88 | -65.62 | 3.30 | 49 |
702 | -19.25 | 24.38 | 31.88 | 3.30 | 49 |
703 | 47.25 | 5.62 | 31.88 | 3.30 | 49 |
704 | 5.25 | 46.88 | 13.12 | 3.30 | 49 |
705 | -22.75 | -28.12 | 31.88 | 3.30 | 49 |
706 | 33.25 | -76.88 | -28.12 | 3.30 | 49 |
707 | 22.75 | 20.62 | 16.88 | 3.29 | 49 |
708 | 5.25 | -16.88 | -20.62 | 3.29 | 49 |
709 | -54.25 | -46.88 | 13.12 | 3.29 | 49 |
house
Contrast Plot
Cluster Table
Height control | fpr |
---|---|
α | 0.001 |
Threshold (computed) | 3.3 |
Cluster size threshold (voxels) | 0 |
Minimum distance (mm) | 8 |
Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
---|---|---|---|---|---|
1 | 22.75 | 20.62 | 9.38 | 5.62 | 639 |
2 | -22.75 | 24.38 | 13.12 | 5.01 | 147 |
3 | 47.25 | -54.38 | -16.88 | 5.00 | 98 |
4 | 22.75 | -5.62 | 20.62 | 4.99 | 49 |
5 | 22.75 | 13.12 | 20.62 | 4.88 | 98 |
6 | -15.75 | 24.38 | 9.38 | 4.79 | 639 |
7 | 33.25 | 28.12 | 28.12 | 4.64 | 98 |
8 | -22.75 | -39.38 | -1.88 | 4.59 | 246 |
8a | -22.75 | -28.12 | -1.88 | 4.38 | |
9 | 12.25 | 24.38 | 20.62 | 4.57 | 147 |
10 | -29.75 | 28.12 | 5.62 | 4.56 | 49 |
11 | -22.75 | 16.88 | 5.62 | 4.39 | 98 |
12 | 1.75 | 31.88 | -13.12 | 4.33 | 49 |
13 | -22.75 | 5.62 | 24.38 | 4.29 | 147 |
14 | 19.25 | -16.88 | 24.38 | 4.28 | 98 |
15 | -15.75 | -35.62 | -1.88 | 4.25 | 98 |
16 | 19.25 | 5.62 | 43.12 | 4.25 | 98 |
17 | -12.25 | -43.12 | -50.62 | 4.25 | 49 |
18 | 8.75 | -24.38 | 24.38 | 4.21 | 49 |
19 | -50.75 | 9.38 | -28.12 | 4.20 | 49 |
20 | -33.25 | -24.38 | 35.62 | 4.19 | 49 |
21 | -12.25 | -16.88 | -20.62 | 4.18 | 49 |
22 | -8.75 | 35.62 | 43.12 | 4.16 | 49 |
23 | -22.75 | 39.38 | 46.88 | 4.15 | 147 |
24 | 26.25 | -24.38 | -69.38 | 4.14 | 49 |
25 | 1.75 | 13.12 | -16.88 | 4.14 | 49 |
26 | 50.75 | 50.62 | -1.88 | 4.14 | 49 |
27 | 22.75 | -31.88 | 1.88 | 4.11 | 49 |
28 | -12.25 | 13.12 | 1.88 | 4.11 | 98 |
29 | -15.75 | 20.62 | 20.62 | 4.10 | 49 |
30 | 8.75 | -9.38 | 31.88 | 4.09 | 98 |
31 | -12.25 | -28.12 | -76.88 | 4.09 | 49 |
32 | -15.75 | -46.88 | 20.62 | 4.08 | 98 |
33 | 26.25 | -61.88 | 31.88 | 4.05 | 49 |
34 | 36.75 | -54.38 | -20.62 | 4.01 | 49 |
35 | 15.75 | -54.38 | 5.62 | 4.00 | 49 |
36 | -12.25 | 1.88 | -61.88 | 4.00 | 98 |
37 | -33.25 | -58.12 | 35.62 | 3.99 | 49 |
38 | -54.25 | -20.62 | -9.38 | 3.97 | 49 |
39 | -26.25 | 9.38 | 20.62 | 3.97 | 98 |
40 | -15.75 | 20.62 | 1.88 | 3.96 | 49 |
41 | 15.75 | -28.12 | 24.38 | 3.92 | 49 |
42 | 15.75 | -39.38 | 13.12 | 3.92 | 49 |
43 | 22.75 | -16.88 | 16.88 | 3.91 | 49 |
44 | 22.75 | 16.88 | 5.62 | 3.90 | 49 |
45 | 33.25 | -43.12 | -35.62 | 3.89 | 49 |
46 | -29.75 | 16.88 | 9.38 | 3.89 | 49 |
47 | 8.75 | -16.88 | 31.88 | 3.89 | 49 |
48 | -40.25 | -58.12 | 28.12 | 3.89 | 49 |
49 | 26.25 | 9.38 | -31.88 | 3.87 | 49 |
50 | 43.75 | -1.88 | 20.62 | 3.86 | 49 |
51 | 22.75 | -43.12 | -31.88 | 3.84 | 49 |
52 | -22.75 | 20.62 | 20.62 | 3.83 | 98 |
53 | 22.75 | -43.12 | 9.38 | 3.83 | 49 |
54 | -15.75 | 31.88 | 5.62 | 3.83 | 49 |
55 | 36.75 | -13.12 | -31.88 | 3.83 | 49 |
56 | -54.25 | -13.12 | -1.88 | 3.82 | 49 |
57 | 5.25 | -20.62 | -13.12 | 3.82 | 49 |
58 | -29.75 | -31.88 | 35.62 | 3.81 | 49 |
59 | 26.25 | 13.12 | 13.12 | 3.79 | 49 |
60 | -26.25 | 13.12 | 16.88 | 3.78 | 49 |
61 | 33.25 | 5.62 | -39.38 | 3.75 | 49 |
62 | 5.25 | -65.62 | 54.38 | 3.73 | 49 |
63 | -15.75 | -20.62 | -28.12 | 3.73 | 49 |
64 | 26.25 | -1.88 | 13.12 | 3.72 | 49 |
65 | -15.75 | 58.12 | 5.62 | 3.72 | 49 |
66 | 26.25 | 5.62 | 9.38 | 3.72 | 49 |
67 | -15.75 | -50.62 | 24.38 | 3.71 | 49 |
68 | 40.25 | 31.88 | -24.38 | 3.71 | 49 |
69 | 50.75 | -31.88 | -50.62 | 3.70 | 49 |
70 | -8.75 | 1.88 | 28.12 | 3.68 | 98 |
71 | 33.25 | 54.38 | 28.12 | 3.67 | 49 |
72 | -47.25 | -76.88 | 9.38 | 3.67 | 49 |
73 | 33.25 | 13.12 | -5.62 | 3.66 | 49 |
74 | 8.75 | 20.62 | 20.62 | 3.65 | 49 |
75 | -33.25 | -73.12 | -31.88 | 3.64 | 98 |
76 | 12.25 | -31.88 | -73.12 | 3.63 | 49 |
77 | 5.25 | 31.88 | 50.62 | 3.63 | 49 |
78 | -12.25 | -39.38 | 46.88 | 3.63 | 49 |
79 | -19.25 | 61.88 | 20.62 | 3.62 | 49 |
80 | 40.25 | -39.38 | 13.12 | 3.62 | 49 |
81 | 40.25 | -13.12 | -43.12 | 3.62 | 49 |
82 | -22.75 | -24.38 | 46.88 | 3.61 | 49 |
83 | -33.25 | 9.38 | 5.62 | 3.61 | 49 |
84 | 33.25 | -76.88 | -24.38 | 3.60 | 49 |
85 | 29.75 | -50.62 | -39.38 | 3.60 | 49 |
86 | -19.25 | 31.88 | 20.62 | 3.60 | 49 |
87 | -1.75 | -61.88 | -39.38 | 3.60 | 49 |
88 | 15.75 | -1.88 | -16.88 | 3.59 | 49 |
89 | -33.25 | 13.12 | -1.88 | 3.58 | 49 |
90 | 26.25 | 9.38 | -24.38 | 3.57 | 49 |
91 | -36.75 | -39.38 | -46.88 | 3.57 | 49 |
92 | 8.75 | 43.12 | -5.62 | 3.56 | 49 |
93 | 8.75 | -61.88 | -50.62 | 3.56 | 49 |
94 | -5.25 | 39.38 | -20.62 | 3.56 | 98 |
95 | 22.75 | -13.12 | 20.62 | 3.56 | 49 |
96 | 40.25 | -50.62 | -54.38 | 3.56 | 98 |
97 | -1.75 | -58.12 | -28.12 | 3.55 | 49 |
98 | -43.75 | -9.38 | 39.38 | 3.55 | 49 |
99 | 33.25 | 28.12 | -46.88 | 3.54 | 49 |
100 | -15.75 | 31.88 | 24.38 | 3.54 | 49 |
101 | 57.75 | -54.38 | 1.88 | 3.53 | 49 |
102 | -40.25 | -1.88 | 24.38 | 3.52 | 49 |
103 | 33.25 | 9.38 | 1.88 | 3.52 | 49 |
104 | 1.75 | -46.88 | -5.62 | 3.52 | 49 |
105 | 22.75 | -39.38 | 46.88 | 3.52 | 49 |
106 | -26.25 | 1.88 | 13.12 | 3.51 | 49 |
107 | -12.25 | -5.62 | -13.12 | 3.51 | 98 |
108 | -36.75 | -65.62 | -16.88 | 3.51 | 49 |
109 | -26.25 | -50.62 | -46.88 | 3.51 | 49 |
110 | 26.25 | -73.12 | 31.88 | 3.50 | 49 |
111 | 26.25 | -13.12 | 54.38 | 3.50 | 49 |
112 | 15.75 | -50.62 | 9.38 | 3.50 | 49 |
113 | -36.75 | 24.38 | 13.12 | 3.50 | 49 |
114 | -33.25 | 61.88 | 39.38 | 3.50 | 49 |
115 | 19.25 | -73.12 | -16.88 | 3.49 | 98 |
116 | -40.25 | -69.38 | 20.62 | 3.49 | 49 |
117 | -12.25 | -43.12 | -16.88 | 3.48 | 49 |
118 | 64.75 | 1.88 | 35.62 | 3.48 | 49 |
119 | 22.75 | -76.88 | 20.62 | 3.47 | 49 |
120 | -22.75 | -9.38 | -65.62 | 3.47 | 49 |
121 | -50.75 | 31.88 | 9.38 | 3.47 | 49 |
122 | -8.75 | -24.38 | 1.88 | 3.44 | 49 |
123 | 19.25 | -58.12 | 20.62 | 3.44 | 49 |
124 | 50.75 | 13.12 | 9.38 | 3.43 | 49 |
125 | 57.75 | -16.88 | 16.88 | 3.43 | 49 |
126 | -64.75 | -5.62 | 28.12 | 3.43 | 49 |
127 | -15.75 | -24.38 | -9.38 | 3.43 | 49 |
128 | 43.75 | 20.62 | 16.88 | 3.43 | 49 |
129 | -64.75 | -24.38 | -20.62 | 3.42 | 49 |
130 | 5.25 | -43.12 | -1.88 | 3.42 | 49 |
131 | 1.75 | 54.38 | -9.38 | 3.42 | 49 |
132 | -8.75 | -46.88 | -31.88 | 3.42 | 49 |
133 | -8.75 | -28.12 | 5.62 | 3.42 | 49 |
134 | -15.75 | -61.88 | 43.12 | 3.42 | 49 |
135 | 29.75 | 1.88 | 13.12 | 3.42 | 49 |
136 | 36.75 | 28.12 | 39.38 | 3.41 | 49 |
137 | 50.75 | -43.12 | -1.88 | 3.41 | 49 |
138 | 29.75 | -65.62 | -24.38 | 3.41 | 49 |
139 | 22.75 | -9.38 | 13.12 | 3.41 | 49 |
140 | 36.75 | -50.62 | -24.38 | 3.40 | 49 |
141 | 36.75 | -61.88 | -13.12 | 3.40 | 49 |
142 | -15.75 | -31.88 | -50.62 | 3.40 | 49 |
143 | -40.25 | -28.12 | -24.38 | 3.40 | 49 |
144 | -40.25 | -46.88 | 39.38 | 3.40 | 49 |
145 | 22.75 | -73.12 | -13.12 | 3.39 | 49 |
146 | 22.75 | -9.38 | 35.62 | 3.39 | 49 |
147 | 22.75 | -65.62 | 20.62 | 3.39 | 49 |
148 | 29.75 | -16.88 | 46.88 | 3.39 | 49 |
149 | -26.25 | 20.62 | -1.88 | 3.38 | 49 |
150 | 15.75 | -1.88 | 69.38 | 3.38 | 49 |
151 | -22.75 | -58.12 | 24.38 | 3.37 | 49 |
152 | 57.75 | 16.88 | -1.88 | 3.37 | 49 |
153 | -40.25 | 24.38 | 35.62 | 3.37 | 49 |
154 | 26.25 | 5.62 | -28.12 | 3.36 | 49 |
155 | -15.75 | 16.88 | 13.12 | 3.35 | 49 |
156 | 12.25 | 1.88 | 28.12 | 3.35 | 49 |
157 | -5.25 | 28.12 | 13.12 | 3.35 | 49 |
158 | 15.75 | 24.38 | -13.12 | 3.34 | 49 |
159 | -8.75 | 28.12 | 28.12 | 3.34 | 49 |
160 | -12.25 | -58.12 | -46.88 | 3.34 | 49 |
161 | -12.25 | -65.62 | -39.38 | 3.34 | 49 |
162 | 19.25 | 24.38 | 5.62 | 3.34 | 49 |
163 | -22.75 | -16.88 | 24.38 | 3.33 | 49 |
164 | -12.25 | 43.12 | 46.88 | 3.33 | 49 |
165 | -15.75 | -69.38 | 46.88 | 3.33 | 49 |
166 | 26.25 | -16.88 | -9.38 | 3.32 | 49 |
167 | -26.25 | -31.88 | -69.38 | 3.32 | 49 |
168 | 26.25 | -50.62 | -35.62 | 3.32 | 49 |
169 | -36.75 | -24.38 | 1.88 | 3.32 | 49 |
170 | 19.25 | -35.62 | 1.88 | 3.32 | 49 |
171 | 36.75 | 20.62 | -13.12 | 3.31 | 49 |
172 | 8.75 | -80.62 | -5.62 | 3.31 | 49 |
173 | 12.25 | -5.62 | -5.62 | 3.30 | 49 |
174 | -40.25 | 50.62 | 1.88 | 3.30 | 49 |
175 | -15.75 | -28.12 | -5.62 | 3.29 | 49 |
176 | 29.75 | -54.38 | -24.38 | 3.29 | 49 |
chair
Contrast Plot
Cluster Table
Height control | fpr |
---|---|
α | 0.001 |
Threshold (computed) | 3.3 |
Cluster size threshold (voxels) | 0 |
Minimum distance (mm) | 8 |
Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
---|---|---|---|---|---|
1 | 40.25 | -46.88 | 13.12 | 4.86 | 147 |
2 | -36.75 | -76.88 | 1.88 | 4.23 | 49 |
3 | 12.25 | 35.62 | -5.62 | 4.20 | 49 |
4 | -50.75 | 39.38 | 16.88 | 4.17 | 49 |
5 | -50.75 | -39.38 | -1.88 | 3.94 | 147 |
6 | -54.25 | -43.12 | 46.88 | 3.90 | 49 |
7 | 33.25 | -58.12 | -1.88 | 3.89 | 49 |
8 | -29.75 | -43.12 | -58.12 | 3.88 | 49 |
9 | -36.75 | -61.88 | 43.12 | 3.84 | 49 |
10 | 19.25 | 20.62 | 20.62 | 3.81 | 49 |
11 | 12.25 | 5.62 | -24.38 | 3.77 | 98 |
12 | 22.75 | 24.38 | 16.88 | 3.76 | 49 |
13 | 33.25 | 43.12 | -16.88 | 3.75 | 49 |
14 | 26.25 | -46.88 | -35.62 | 3.75 | 49 |
15 | 26.25 | 16.88 | 16.88 | 3.73 | 49 |
16 | -15.75 | -1.88 | -16.88 | 3.70 | 49 |
17 | -5.25 | 43.12 | 50.62 | 3.67 | 49 |
18 | 33.25 | 13.12 | -1.88 | 3.66 | 49 |
19 | -57.75 | -9.38 | -1.88 | 3.62 | 49 |
20 | -22.75 | -31.88 | -69.38 | 3.61 | 49 |
21 | -22.75 | 24.38 | 13.12 | 3.57 | 49 |
22 | -57.75 | 13.12 | 1.88 | 3.52 | 49 |
23 | 33.25 | -58.12 | -16.88 | 3.50 | 49 |
24 | -29.75 | 20.62 | 46.88 | 3.48 | 49 |
25 | 12.25 | 16.88 | -20.62 | 3.44 | 49 |
26 | 33.25 | 28.12 | -31.88 | 3.43 | 49 |
27 | 36.75 | -24.38 | 20.62 | 3.43 | 49 |
28 | 43.75 | -28.12 | -13.12 | 3.40 | 49 |
29 | 29.75 | 13.12 | -43.12 | 3.39 | 49 |
30 | 12.25 | 28.12 | -16.88 | 3.38 | 49 |
31 | -22.75 | -43.12 | -31.88 | 3.37 | 49 |
32 | -1.75 | 5.62 | 31.88 | 3.37 | 49 |
33 | 33.25 | 9.38 | -13.12 | 3.36 | 49 |
34 | 33.25 | -20.62 | -58.12 | 3.35 | 49 |
35 | -15.75 | -35.62 | -24.38 | 3.34 | 49 |
36 | 29.75 | -43.12 | -35.62 | 3.34 | 49 |
37 | -22.75 | 9.38 | 24.38 | 3.34 | 49 |
38 | -36.75 | -46.88 | -54.38 | 3.33 | 49 |
39 | 1.75 | 28.12 | -35.62 | 3.32 | 49 |
40 | 36.75 | -28.12 | -9.38 | 3.29 | 49 |
scrambledpix
Contrast Plot
Cluster Table
Height control | fpr |
---|---|
α | 0.001 |
Threshold (computed) | 3.3 |
Cluster size threshold (voxels) | 0 |
Minimum distance (mm) | 8 |
Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
---|---|---|---|---|---|
1 | 1.75 | 24.38 | -13.12 | 5.74 | 49 |
2 | -22.75 | -46.88 | 43.12 | 4.82 | 98 |
3 | -15.75 | 61.88 | -9.38 | 4.79 | 147 |
4 | -29.75 | -61.88 | -31.88 | 4.65 | 49 |
5 | 50.75 | 16.88 | -28.12 | 4.14 | 147 |
6 | -22.75 | -54.38 | -9.38 | 3.94 | 49 |
7 | 5.25 | 43.12 | -28.12 | 3.92 | 49 |
8 | -22.75 | -9.38 | 20.62 | 3.82 | 49 |
9 | 40.25 | -16.88 | -39.38 | 3.80 | 49 |
10 | -64.75 | -31.88 | 39.38 | 3.78 | 49 |
11 | -26.25 | -69.38 | 39.38 | 3.59 | 49 |
12 | 22.75 | -24.38 | 46.88 | 3.56 | 49 |
13 | 22.75 | 46.88 | -5.62 | 3.54 | 49 |
14 | -1.75 | 5.62 | 31.88 | 3.53 | 49 |
15 | -40.25 | -16.88 | -54.38 | 3.46 | 49 |
16 | 33.25 | 35.62 | -28.12 | 3.44 | 49 |
17 | -15.75 | -43.12 | -16.88 | 3.41 | 49 |
18 | 26.25 | -24.38 | -69.38 | 3.40 | 49 |
19 | 1.75 | 13.12 | 31.88 | 3.34 | 49 |
20 | 33.25 | -20.62 | 43.12 | 3.33 | 49 |
face
Contrast Plot
Cluster Table
Height control | fpr |
---|---|
α | 0.001 |
Threshold (computed) | 3.3 |
Cluster size threshold (voxels) | 0 |
Minimum distance (mm) | 8 |
Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
---|---|---|---|---|---|
1 | 1.75 | 24.38 | -13.12 | 5.17 | 98 |
2 | -50.75 | -50.62 | 13.12 | 5.09 | 196 |
2a | -47.25 | -58.12 | 13.12 | 3.37 | |
3 | -47.25 | -43.12 | -35.62 | 4.74 | 49 |
4 | 68.25 | -13.12 | -9.38 | 4.74 | 147 |
5 | -47.25 | -39.38 | 16.88 | 4.47 | 98 |
6 | 29.75 | -46.88 | 35.62 | 4.40 | 49 |
7 | 29.75 | -54.38 | 46.88 | 4.38 | 49 |
8 | -33.25 | 50.62 | 16.88 | 4.37 | 147 |
9 | -57.75 | -16.88 | 1.88 | 4.37 | 147 |
10 | -36.75 | 31.88 | 16.88 | 4.22 | 98 |
11 | -12.25 | -58.12 | -16.88 | 4.22 | 49 |
12 | -26.25 | 24.38 | -13.12 | 4.16 | 147 |
13 | -40.25 | 46.88 | 13.12 | 4.14 | 98 |
14 | 22.75 | -50.62 | -24.38 | 4.11 | 49 |
15 | -22.75 | 39.38 | 13.12 | 4.09 | 49 |
16 | 40.25 | 28.12 | 39.38 | 3.98 | 98 |
17 | -15.75 | 13.12 | 73.12 | 3.97 | 98 |
18 | 5.25 | 20.62 | 65.62 | 3.95 | 49 |
19 | 5.25 | -24.38 | -20.62 | 3.93 | 49 |
20 | -47.25 | -50.62 | 20.62 | 3.88 | 49 |
21 | 43.75 | 35.62 | 35.62 | 3.83 | 98 |
22 | -47.25 | -28.12 | 28.12 | 3.80 | 147 |
23 | -1.75 | 31.88 | 61.88 | 3.79 | 98 |
24 | -54.25 | -43.12 | 20.62 | 3.77 | 49 |
25 | -8.75 | 13.12 | 65.62 | 3.77 | 49 |
26 | 1.75 | -43.12 | -1.88 | 3.75 | 49 |
27 | -8.75 | -46.88 | -31.88 | 3.73 | 49 |
28 | -47.25 | -61.88 | -5.62 | 3.72 | 49 |
29 | -19.25 | -73.12 | 39.38 | 3.72 | 49 |
30 | -26.25 | -88.12 | -9.38 | 3.71 | 98 |
31 | 12.25 | 28.12 | 61.88 | 3.71 | 49 |
32 | -50.75 | -35.62 | 43.12 | 3.70 | 49 |
33 | -36.75 | -43.12 | 39.38 | 3.70 | 147 |
34 | -47.25 | 24.38 | 20.62 | 3.69 | 49 |
35 | -36.75 | -31.88 | -46.88 | 3.69 | 49 |
36 | -47.25 | -54.38 | -9.38 | 3.69 | 49 |
37 | 40.25 | 43.12 | 16.88 | 3.69 | 49 |
38 | -57.75 | -9.38 | -1.88 | 3.67 | 49 |
39 | -57.75 | 31.88 | 31.88 | 3.67 | 49 |
40 | 5.25 | -58.12 | -24.38 | 3.66 | 98 |
41 | -36.75 | 31.88 | 35.62 | 3.65 | 147 |
42 | 33.25 | -46.88 | -39.38 | 3.64 | 49 |
43 | -43.75 | -31.88 | 35.62 | 3.62 | 49 |
44 | -40.25 | -43.12 | -16.88 | 3.60 | 49 |
45 | -12.25 | -76.88 | 28.12 | 3.60 | 49 |
46 | -8.75 | -28.12 | 61.88 | 3.58 | 49 |
47 | 19.25 | -16.88 | 39.38 | 3.56 | 49 |
48 | 26.25 | -43.12 | 35.62 | 3.56 | 49 |
49 | 43.75 | -54.38 | 9.38 | 3.53 | 49 |
50 | 19.25 | -46.88 | -20.62 | 3.53 | 49 |
51 | -29.75 | 31.88 | -9.38 | 3.52 | 49 |
52 | 40.25 | -39.38 | -24.38 | 3.51 | 49 |
53 | 36.75 | 61.88 | 28.12 | 3.51 | 49 |
54 | -15.75 | -73.12 | 16.88 | 3.50 | 49 |
55 | 8.75 | -1.88 | 9.38 | 3.50 | 49 |
56 | -47.25 | -46.88 | 16.88 | 3.49 | 49 |
57 | -22.75 | -46.88 | -50.62 | 3.49 | 49 |
58 | 22.75 | 31.88 | 28.12 | 3.49 | 49 |
59 | 12.25 | -58.12 | -20.62 | 3.48 | 49 |
60 | 5.25 | -65.62 | 13.12 | 3.48 | 49 |
61 | -47.25 | -16.88 | -35.62 | 3.48 | 49 |
62 | -19.25 | -61.88 | -9.38 | 3.47 | 49 |
63 | -15.75 | -13.12 | 24.38 | 3.47 | 98 |
64 | -26.25 | -43.12 | -43.12 | 3.47 | 49 |
65 | -12.25 | -39.38 | 58.12 | 3.46 | 49 |
66 | -1.75 | 39.38 | -20.62 | 3.46 | 49 |
67 | 26.25 | -43.12 | -31.88 | 3.46 | 49 |
68 | 33.25 | -61.88 | -13.12 | 3.45 | 49 |
69 | 5.25 | 31.88 | -35.62 | 3.45 | 49 |
70 | -40.25 | 50.62 | 20.62 | 3.43 | 49 |
71 | -40.25 | -35.62 | -35.62 | 3.43 | 49 |
72 | -50.75 | -28.12 | 35.62 | 3.42 | 49 |
73 | 15.75 | -54.38 | -20.62 | 3.41 | 49 |
74 | 36.75 | -43.12 | 5.62 | 3.40 | 49 |
75 | -33.25 | 39.38 | 54.38 | 3.39 | 49 |
76 | -15.75 | -54.38 | 50.62 | 3.38 | 49 |
77 | 29.75 | -35.62 | 35.62 | 3.38 | 49 |
78 | -43.75 | -39.38 | -9.38 | 3.36 | 49 |
79 | -29.75 | 28.12 | 13.12 | 3.35 | 49 |
80 | -1.75 | -20.62 | 24.38 | 3.35 | 49 |
81 | -40.25 | 20.62 | 54.38 | 3.35 | 49 |
82 | 33.25 | -58.12 | -16.88 | 3.34 | 49 |
83 | -47.25 | -31.88 | 5.62 | 3.34 | 49 |
84 | 57.75 | -35.62 | 43.12 | 3.33 | 49 |
85 | -29.75 | 28.12 | 39.38 | 3.32 | 49 |
86 | -47.25 | -46.88 | -31.88 | 3.32 | 49 |
87 | 26.25 | -54.38 | -20.62 | 3.32 | 49 |
88 | -33.25 | 31.88 | 46.88 | 3.32 | 49 |
89 | -8.75 | -58.12 | -43.12 | 3.30 | 49 |
90 | -33.25 | -58.12 | 20.62 | 3.29 | 49 |
shoe
Contrast Plot
Cluster Table
Height control | fpr |
---|---|
α | 0.001 |
Threshold (computed) | 3.3 |
Cluster size threshold (voxels) | 0 |
Minimum distance (mm) | 8 |
Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
---|---|---|---|---|---|
1 | 22.75 | -9.38 | 35.62 | 4.74 | 49 |
2 | 61.25 | 24.38 | 31.88 | 4.22 | 147 |
3 | 36.75 | 46.88 | -16.88 | 3.95 | 49 |
4 | 50.75 | -35.62 | -35.62 | 3.83 | 49 |
5 | 22.75 | -69.38 | -28.12 | 3.82 | 49 |
6 | 19.25 | -20.62 | -28.12 | 3.81 | 49 |
7 | 19.25 | 73.12 | 20.62 | 3.76 | 49 |
8 | -54.25 | -65.62 | 16.88 | 3.70 | 49 |
9 | -19.25 | 20.62 | 43.12 | 3.69 | 49 |
10 | -47.25 | -16.88 | -24.38 | 3.66 | 49 |
11 | -1.75 | -28.12 | -73.12 | 3.65 | 49 |
12 | 19.25 | -28.12 | -54.38 | 3.59 | 49 |
13 | 15.75 | -24.38 | -73.12 | 3.57 | 49 |
14 | -68.25 | -20.62 | 24.38 | 3.56 | 49 |
15 | -68.25 | -9.38 | 9.38 | 3.53 | 49 |
16 | 26.25 | -46.88 | -24.38 | 3.52 | 49 |
17 | -1.75 | -20.62 | 24.38 | 3.52 | 49 |
18 | 15.75 | 16.88 | 58.12 | 3.45 | 49 |
19 | 36.75 | 28.12 | 39.38 | 3.45 | 49 |
20 | 33.25 | 9.38 | 61.88 | 3.43 | 49 |
21 | -12.25 | 1.88 | -69.38 | 3.37 | 49 |
22 | 26.25 | -61.88 | 13.12 | 3.36 | 49 |
23 | -29.75 | 9.38 | 35.62 | 3.36 | 49 |
24 | 1.75 | -24.38 | -39.38 | 3.36 | 49 |
25 | -12.25 | 39.38 | 65.62 | 3.36 | 49 |
26 | 12.25 | 5.62 | 31.88 | 3.33 | 49 |
27 | 64.75 | -1.88 | 31.88 | 3.32 | 49 |
28 | 26.25 | 35.62 | 28.12 | 3.30 | 49 |
cat
Contrast Plot
Cluster Table
Height control | fpr |
---|---|
α | 0.001 |
Threshold (computed) | 3.3 |
Cluster size threshold (voxels) | 0 |
Minimum distance (mm) | 8 |
Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
---|---|---|---|---|---|
1 | -12.25 | -76.88 | 31.88 | 4.68 | 98 |
2 | 43.75 | -5.62 | 16.88 | 4.53 | 196 |
3 | -15.75 | -20.62 | -58.12 | 4.45 | 98 |
4 | -40.25 | -65.62 | 13.12 | 4.36 | 49 |
5 | 1.75 | 35.62 | -13.12 | 4.29 | 49 |
6 | -12.25 | -58.12 | -16.88 | 4.27 | 49 |
7 | 5.25 | -61.88 | -24.38 | 4.27 | 98 |
8 | 43.75 | 5.62 | 1.88 | 4.26 | 344 |
9 | -1.75 | 50.62 | -9.38 | 4.25 | 246 |
10 | 5.25 | -24.38 | -73.12 | 4.22 | 49 |
11 | 22.75 | -61.88 | -54.38 | 4.04 | 49 |
12 | 15.75 | -16.88 | 46.88 | 4.02 | 49 |
13 | 36.75 | 9.38 | -35.62 | 3.99 | 49 |
14 | 19.25 | -31.88 | -69.38 | 3.98 | 49 |
15 | 22.75 | -24.38 | -58.12 | 3.98 | 49 |
16 | -64.75 | -9.38 | -24.38 | 3.98 | 49 |
17 | 36.75 | 69.38 | 5.62 | 3.91 | 98 |
18 | 12.25 | -61.88 | -31.88 | 3.86 | 98 |
19 | 1.75 | 28.12 | -35.62 | 3.85 | 49 |
20 | 47.25 | 1.88 | -46.88 | 3.82 | 49 |
21 | 8.75 | -65.62 | -24.38 | 3.82 | 49 |
22 | -29.75 | 39.38 | 54.38 | 3.81 | 49 |
23 | 15.75 | -31.88 | -61.88 | 3.76 | 49 |
24 | 5.25 | -80.62 | 9.38 | 3.75 | 49 |
25 | 43.75 | 24.38 | 9.38 | 3.72 | 49 |
26 | 40.25 | -5.62 | -5.62 | 3.70 | 49 |
27 | 50.75 | 28.12 | 24.38 | 3.70 | 49 |
28 | 22.75 | -58.12 | -61.88 | 3.70 | 49 |
29 | -40.25 | -46.88 | 16.88 | 3.66 | 49 |
30 | 5.25 | 43.12 | 50.62 | 3.63 | 49 |
31 | -12.25 | -73.12 | -31.88 | 3.62 | 49 |
32 | -26.25 | -80.62 | 13.12 | 3.57 | 98 |
33 | 50.75 | 1.88 | -24.38 | 3.57 | 49 |
34 | -54.25 | -46.88 | 5.62 | 3.57 | 98 |
35 | -40.25 | -69.38 | 35.62 | 3.53 | 49 |
36 | 36.75 | 28.12 | -20.62 | 3.53 | 49 |
37 | 8.75 | 16.88 | -16.88 | 3.53 | 49 |
38 | 5.25 | 20.62 | 50.62 | 3.53 | 49 |
39 | -47.25 | -31.88 | -43.12 | 3.52 | 49 |
40 | -40.25 | -5.62 | 50.62 | 3.50 | 49 |
41 | -5.25 | -50.62 | -13.12 | 3.50 | 49 |
42 | -29.75 | -46.88 | 5.62 | 3.48 | 49 |
43 | 29.75 | 1.88 | -31.88 | 3.47 | 49 |
44 | -8.75 | -35.62 | -24.38 | 3.44 | 49 |
45 | 61.25 | -31.88 | 43.12 | 3.44 | 49 |
46 | 5.25 | -31.88 | -69.38 | 3.43 | 49 |
47 | -22.75 | 65.62 | 39.38 | 3.42 | 98 |
48 | 36.75 | 28.12 | 43.12 | 3.38 | 147 |
49 | -8.75 | -46.88 | -28.12 | 3.36 | 49 |
50 | 12.25 | -39.38 | -31.88 | 3.36 | 49 |
51 | -8.75 | -28.12 | -61.88 | 3.35 | 49 |
52 | 61.25 | -31.88 | 20.62 | 3.35 | 49 |
53 | -40.25 | -31.88 | -58.12 | 3.34 | 49 |
54 | 40.25 | -20.62 | -39.38 | 3.32 | 49 |
55 | 5.25 | -73.12 | -20.62 | 3.32 | 49 |
56 | -29.75 | -20.62 | -35.62 | 3.32 | 49 |
57 | 15.75 | 39.38 | -20.62 | 3.31 | 49 |
58 | -36.75 | -50.62 | -39.38 | 3.31 | 49 |
59 | -47.25 | -43.12 | 43.12 | 3.31 | 49 |
60 | 26.25 | -65.62 | 13.12 | 3.30 | 49 |
scissors
Contrast Plot
Cluster Table
Height control | fpr |
---|---|
α | 0.001 |
Threshold (computed) | 3.3 |
Cluster size threshold (voxels) | 0 |
Minimum distance (mm) | 8 |
Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
---|---|---|---|---|---|
1 | -50.75 | 20.62 | -24.38 | 6.55 | 1132 |
2 | -19.25 | 84.38 | 20.62 | 6.20 | 1476 |
2a | -26.25 | 80.62 | 16.88 | 4.90 | |
2b | -15.75 | 76.88 | 31.88 | 4.42 | |
3 | -26.25 | 24.38 | 28.12 | 5.83 | 147 |
4 | 36.75 | 20.62 | -31.88 | 5.58 | 246 |
5 | 29.75 | 5.62 | -5.62 | 5.32 | 98 |
6 | -12.25 | 20.62 | -46.88 | 5.25 | 344 |
7 | 12.25 | -35.62 | -69.38 | 5.14 | 98 |
8 | 15.75 | 76.88 | 28.12 | 5.05 | 49 |
9 | 5.25 | 24.38 | -46.88 | 5.04 | 393 |
10 | -12.25 | 76.88 | 20.62 | 5.02 | 935 |
10a | -5.25 | 84.38 | 1.88 | 4.38 | |
10b | -5.25 | 84.38 | 20.62 | 4.38 | |
10c | -5.25 | 80.62 | 13.12 | 4.22 | |
11 | -1.75 | 1.88 | -61.88 | 5.02 | 295 |
12 | -19.25 | 61.88 | 50.62 | 5.00 | 49 |
13 | 12.25 | 13.12 | -43.12 | 4.98 | 49 |
14 | 33.25 | 5.62 | -46.88 | 4.92 | 49 |
15 | 1.75 | -28.12 | -61.88 | 4.88 | 49 |
16 | -54.25 | -39.38 | -31.88 | 4.79 | 49 |
17 | -22.75 | -54.38 | -50.62 | 4.66 | 295 |
18 | 12.25 | -61.88 | -46.88 | 4.56 | 49 |
19 | 12.25 | 80.62 | -5.62 | 4.49 | 49 |
20 | 36.75 | 28.12 | -35.62 | 4.46 | 295 |
21 | -26.25 | -13.12 | 1.88 | 4.45 | 49 |
22 | -15.75 | -43.12 | -46.88 | 4.42 | 98 |
23 | -29.75 | 20.62 | -46.88 | 4.41 | 98 |
24 | -12.25 | 9.38 | -58.12 | 4.41 | 98 |
25 | 26.25 | -46.88 | 1.88 | 4.36 | 49 |
26 | -5.25 | 80.62 | 31.88 | 4.32 | 196 |
27 | 15.75 | -35.62 | -73.12 | 4.32 | 49 |
28 | 50.75 | 24.38 | -35.62 | 4.30 | 98 |
29 | 40.25 | -58.12 | -5.62 | 4.26 | 98 |
30 | -19.25 | 31.88 | -35.62 | 4.26 | 147 |
31 | 12.25 | 13.12 | -50.62 | 4.26 | 344 |
32 | -40.25 | 69.38 | 13.12 | 4.25 | 49 |
33 | 47.25 | 24.38 | -1.88 | 4.23 | 49 |
34 | 1.75 | 1.88 | 31.88 | 4.22 | 147 |
35 | 1.75 | 13.12 | -16.88 | 4.20 | 49 |
36 | 1.75 | -1.88 | -76.88 | 4.20 | 98 |
37 | -40.25 | -9.38 | -5.62 | 4.17 | 49 |
38 | 15.75 | 88.12 | 16.88 | 4.16 | 147 |
39 | -12.25 | 1.88 | -28.12 | 4.15 | 49 |
40 | 15.75 | -16.88 | 46.88 | 4.15 | 49 |
41 | 47.25 | 24.38 | 9.38 | 4.14 | 49 |
42 | -5.25 | -9.38 | 31.88 | 4.13 | 49 |
43 | 40.25 | 28.12 | -43.12 | 4.12 | 49 |
44 | 1.75 | 76.88 | 16.88 | 4.11 | 196 |
45 | 50.75 | 31.88 | -31.88 | 4.10 | 49 |
46 | 1.75 | -5.62 | -80.62 | 4.08 | 98 |
47 | 1.75 | -28.12 | -76.88 | 4.07 | 49 |
48 | -54.25 | 9.38 | -16.88 | 4.05 | 49 |
49 | 50.75 | 20.62 | -1.88 | 4.05 | 49 |
50 | -40.25 | 61.88 | 5.62 | 4.05 | 49 |
51 | -26.25 | -24.38 | 20.62 | 4.04 | 49 |
52 | -47.25 | -5.62 | -28.12 | 4.03 | 49 |
53 | -50.75 | -9.38 | -20.62 | 4.03 | 196 |
54 | -22.75 | -5.62 | -20.62 | 4.01 | 49 |
55 | -5.25 | -28.12 | -76.88 | 4.01 | 49 |
56 | 54.25 | 5.62 | 50.62 | 4.01 | 98 |
57 | 40.25 | 5.62 | 31.88 | 4.00 | 49 |
58 | 29.75 | 76.88 | 13.12 | 3.98 | 49 |
59 | 22.75 | -54.38 | -43.12 | 3.98 | 49 |
60 | -26.25 | -1.88 | -9.38 | 3.96 | 98 |
61 | 50.75 | 50.62 | 20.62 | 3.93 | 49 |
62 | -12.25 | 88.12 | 9.38 | 3.91 | 49 |
63 | -36.75 | -1.88 | -20.62 | 3.91 | 147 |
64 | -29.75 | -69.38 | 9.38 | 3.91 | 98 |
65 | 47.25 | -1.88 | 20.62 | 3.90 | 147 |
66 | 19.25 | -16.88 | -54.38 | 3.90 | 49 |
67 | 57.75 | -24.38 | 5.62 | 3.89 | 49 |
68 | -19.25 | 50.62 | 13.12 | 3.88 | 49 |
69 | 33.25 | 24.38 | -43.12 | 3.88 | 98 |
70 | 12.25 | 80.62 | 35.62 | 3.87 | 98 |
71 | -26.25 | -80.62 | -5.62 | 3.86 | 49 |
72 | -26.25 | 31.88 | -39.38 | 3.86 | 49 |
73 | -68.25 | -5.62 | 5.62 | 3.86 | 98 |
74 | -36.75 | 65.62 | 20.62 | 3.85 | 98 |
75 | -40.25 | -16.88 | -65.62 | 3.85 | 49 |
76 | 22.75 | -58.12 | -50.62 | 3.85 | 49 |
77 | 19.25 | 80.62 | 1.88 | 3.85 | 98 |
78 | -5.25 | 1.88 | -76.88 | 3.85 | 49 |
79 | 12.25 | -61.88 | 9.38 | 3.84 | 49 |
80 | -36.75 | 69.38 | 16.88 | 3.83 | 49 |
81 | 15.75 | 50.62 | -9.38 | 3.83 | 49 |
82 | 33.25 | -35.62 | -35.62 | 3.83 | 49 |
83 | 22.75 | -1.88 | 9.38 | 3.83 | 49 |
84 | -5.25 | 5.62 | -69.38 | 3.82 | 49 |
85 | 5.25 | 13.12 | 31.88 | 3.82 | 98 |
86 | -33.25 | -65.62 | -16.88 | 3.82 | 49 |
87 | -5.25 | -16.88 | -39.38 | 3.80 | 49 |
88 | 22.75 | 43.12 | -9.38 | 3.80 | 49 |
89 | -50.75 | -13.12 | 5.62 | 3.80 | 49 |
90 | 43.75 | -61.88 | 5.62 | 3.78 | 49 |
91 | 19.25 | -1.88 | -1.88 | 3.76 | 49 |
92 | 22.75 | -35.62 | -9.38 | 3.75 | 49 |
93 | 12.25 | 24.38 | -35.62 | 3.75 | 98 |
94 | -8.75 | 24.38 | -35.62 | 3.74 | 49 |
95 | -40.25 | 43.12 | -31.88 | 3.74 | 49 |
96 | 40.25 | -24.38 | -35.62 | 3.73 | 49 |
97 | -8.75 | 16.88 | -43.12 | 3.72 | 49 |
98 | 15.75 | 88.12 | 9.38 | 3.72 | 98 |
99 | 29.75 | -1.88 | 24.38 | 3.72 | 49 |
100 | 54.25 | 1.88 | 43.12 | 3.70 | 49 |
101 | 1.75 | 65.62 | 46.88 | 3.70 | 49 |
102 | 22.75 | -20.62 | -5.62 | 3.70 | 49 |
103 | 29.75 | 58.12 | -16.88 | 3.69 | 49 |
104 | -1.75 | 73.12 | 35.62 | 3.69 | 49 |
105 | 40.25 | -39.38 | 58.12 | 3.68 | 49 |
106 | 26.25 | -50.62 | -54.38 | 3.68 | 49 |
107 | -8.75 | 28.12 | 54.38 | 3.68 | 196 |
108 | -22.75 | -39.38 | -54.38 | 3.67 | 49 |
109 | -1.75 | -35.62 | -65.62 | 3.66 | 98 |
110 | 1.75 | 39.38 | -16.88 | 3.65 | 49 |
111 | 8.75 | -9.38 | -76.88 | 3.65 | 49 |
112 | 33.25 | -5.62 | -1.88 | 3.64 | 98 |
113 | -1.75 | 28.12 | -39.38 | 3.64 | 49 |
114 | 1.75 | 80.62 | 24.38 | 3.62 | 98 |
115 | 19.25 | -46.88 | -35.62 | 3.62 | 49 |
116 | 1.75 | -9.38 | 1.88 | 3.61 | 49 |
117 | -47.25 | 24.38 | 20.62 | 3.61 | 49 |
118 | 36.75 | 24.38 | -28.12 | 3.60 | 49 |
119 | 22.75 | -43.12 | -61.88 | 3.59 | 49 |
120 | -22.75 | 58.12 | -20.62 | 3.59 | 98 |
121 | 43.75 | -31.88 | -13.12 | 3.57 | 49 |
122 | -22.75 | 54.38 | -13.12 | 3.55 | 49 |
123 | 1.75 | -5.62 | -20.62 | 3.54 | 49 |
124 | -22.75 | 39.38 | 31.88 | 3.54 | 49 |
125 | -29.75 | 31.88 | -9.38 | 3.53 | 49 |
126 | 57.75 | 16.88 | 16.88 | 3.53 | 49 |
127 | 15.75 | -76.88 | -16.88 | 3.52 | 49 |
128 | 15.75 | 46.88 | -20.62 | 3.52 | 49 |
129 | 33.25 | -39.38 | 24.38 | 3.52 | 49 |
130 | -43.75 | -24.38 | 35.62 | 3.52 | 49 |
131 | -12.25 | 65.62 | -9.38 | 3.52 | 49 |
132 | -33.25 | 39.38 | 54.38 | 3.51 | 49 |
133 | -26.25 | 16.88 | 28.12 | 3.51 | 49 |
134 | 29.75 | -1.88 | 13.12 | 3.50 | 49 |
135 | 12.25 | 1.88 | -69.38 | 3.50 | 49 |
136 | 19.25 | 54.38 | 50.62 | 3.49 | 49 |
137 | 8.75 | 76.88 | 16.88 | 3.49 | 49 |
138 | -26.25 | -28.12 | 31.88 | 3.49 | 49 |
139 | 29.75 | -9.38 | 9.38 | 3.48 | 49 |
140 | 22.75 | 58.12 | -5.62 | 3.48 | 49 |
141 | -19.25 | -20.62 | -1.88 | 3.48 | 49 |
142 | -12.25 | -43.12 | -13.12 | 3.48 | 49 |
143 | -26.25 | 65.62 | 35.62 | 3.48 | 49 |
144 | 15.75 | 76.88 | 20.62 | 3.47 | 98 |
145 | -5.25 | -1.88 | -28.12 | 3.47 | 49 |
146 | -33.25 | 69.38 | 24.38 | 3.46 | 98 |
147 | -19.25 | -5.62 | 16.88 | 3.46 | 49 |
148 | -26.25 | 61.88 | -5.62 | 3.46 | 49 |
149 | -22.75 | 69.38 | 35.62 | 3.46 | 49 |
150 | 29.75 | -46.88 | -61.88 | 3.46 | 49 |
151 | -8.75 | 20.62 | 31.88 | 3.45 | 49 |
152 | 33.25 | 24.38 | 61.88 | 3.45 | 49 |
153 | 40.25 | -1.88 | 61.88 | 3.44 | 98 |
154 | -33.25 | 43.12 | -13.12 | 3.44 | 49 |
155 | 54.25 | 35.62 | 35.62 | 3.44 | 49 |
156 | 22.75 | -20.62 | 20.62 | 3.44 | 49 |
157 | -19.25 | 31.88 | -28.12 | 3.43 | 49 |
158 | -61.25 | -46.88 | 9.38 | 3.43 | 49 |
159 | 19.25 | 16.88 | -46.88 | 3.43 | 49 |
160 | -1.75 | -46.88 | -1.88 | 3.43 | 49 |
161 | 43.75 | -9.38 | -16.88 | 3.43 | 49 |
162 | 57.75 | -31.88 | 46.88 | 3.42 | 49 |
163 | -19.25 | -1.88 | -35.62 | 3.42 | 49 |
164 | 22.75 | 20.62 | 24.38 | 3.42 | 49 |
165 | -19.25 | 9.38 | -35.62 | 3.42 | 49 |
166 | -22.75 | 20.62 | -46.88 | 3.41 | 49 |
167 | -57.75 | -5.62 | -1.88 | 3.41 | 49 |
168 | -5.25 | 39.38 | 58.12 | 3.40 | 49 |
169 | -47.25 | -16.88 | -13.12 | 3.40 | 49 |
170 | -29.75 | -13.12 | -35.62 | 3.40 | 49 |
171 | 33.25 | -39.38 | -43.12 | 3.40 | 49 |
172 | 1.75 | 35.62 | -24.38 | 3.40 | 49 |
173 | 29.75 | 9.38 | 16.88 | 3.39 | 49 |
174 | 15.75 | -28.12 | -54.38 | 3.38 | 49 |
175 | 22.75 | -39.38 | 13.12 | 3.38 | 49 |
176 | 29.75 | -20.62 | -5.62 | 3.38 | 49 |
177 | 40.25 | -43.12 | -5.62 | 3.37 | 49 |
178 | 33.25 | -39.38 | -20.62 | 3.37 | 49 |
179 | -26.25 | 9.38 | 20.62 | 3.37 | 49 |
180 | 50.75 | -16.88 | -13.12 | 3.36 | 49 |
181 | -26.25 | 43.12 | -28.12 | 3.36 | 49 |
182 | 15.75 | -39.38 | 24.38 | 3.36 | 49 |
183 | -12.25 | 1.88 | 9.38 | 3.35 | 49 |
184 | 26.25 | -16.88 | -35.62 | 3.35 | 49 |
185 | 33.25 | 5.62 | 16.88 | 3.35 | 49 |
186 | -19.25 | -1.88 | -9.38 | 3.35 | 49 |
187 | 15.75 | -50.62 | 46.88 | 3.35 | 49 |
188 | -57.75 | -9.38 | -13.12 | 3.35 | 49 |
189 | -15.75 | -65.62 | 5.62 | 3.35 | 49 |
190 | 15.75 | 5.62 | 9.38 | 3.35 | 49 |
191 | 29.75 | -1.88 | 1.88 | 3.35 | 49 |
192 | 8.75 | 1.88 | 24.38 | 3.35 | 49 |
193 | -33.25 | 28.12 | -39.38 | 3.34 | 49 |
194 | 26.25 | 1.88 | 24.38 | 3.34 | 49 |
195 | -22.75 | -88.12 | -1.88 | 3.34 | 49 |
196 | -29.75 | -16.88 | -1.88 | 3.34 | 49 |
197 | 33.25 | -31.88 | -43.12 | 3.34 | 49 |
198 | -1.75 | -13.12 | 31.88 | 3.33 | 49 |
199 | 40.25 | 13.12 | -39.38 | 3.33 | 49 |
200 | 33.25 | -20.62 | 43.12 | 3.33 | 49 |
201 | 22.75 | -9.38 | -5.62 | 3.32 | 49 |
202 | 29.75 | -1.88 | 50.62 | 3.32 | 49 |
203 | 5.25 | -1.88 | 5.62 | 3.32 | 49 |
204 | -12.25 | -50.62 | -50.62 | 3.31 | 49 |
205 | -15.75 | 1.88 | 28.12 | 3.31 | 49 |
206 | -33.25 | 73.12 | 9.38 | 3.31 | 49 |
207 | 1.75 | -1.88 | -24.38 | 3.31 | 49 |
208 | 29.75 | -50.62 | -50.62 | 3.30 | 49 |
209 | 8.75 | 16.88 | -39.38 | 3.30 | 49 |
210 | -19.25 | -20.62 | -20.62 | 3.30 | 49 |
211 | 26.25 | 13.12 | -39.38 | 3.30 | 49 |
212 | 50.75 | -16.88 | 46.88 | 3.30 | 49 |
213 | 29.75 | 54.38 | -5.62 | 3.29 | 49 |
Built using Nilearn. Source code on GitHub. File bugs & feature requests here.
In a jupyter notebook, the report will be automatically inserted, as above. We have several other ways to access the report:
# report.save_as_html('report.html')
# report.open_in_browser()
9.3.9.7. Build the decoding pipeline¶
To define the decoding pipeline we use Decoder object, we choose :
a prediction model, here a Support Vector Classifier, with a linear kernel
the mask to use, here a ventral temporal ROI in the visual cortex
although it usually helps to decode better, z-maps time series don’t need to be rescaled to a 0 mean, variance of 1 so we use standardize=False.
we use univariate feature selection to reduce the dimension of the problem keeping only 5% of voxels which are most informative.
a cross-validation scheme, here we use LeaveOneGroupOut cross-validation on the sessions which corresponds to a leave-one-session-out
We fit directly this pipeline on the Niimgs outputs of the GLM, with corresponding conditions labels and session labels (for the cross validation).
from nilearn.decoding import Decoder
from sklearn.model_selection import LeaveOneGroupOut
decoder = Decoder(estimator='svc', mask=haxby_dataset.mask, standardize=False,
screening_percentile=5, cv=LeaveOneGroupOut())
decoder.fit(z_maps, conditions_label, groups=session_label)
# Return the corresponding mean prediction accuracy compared to chance
classification_accuracy = np.mean(list(decoder.cv_scores_.values()))
chance_level = 1. / len(np.unique(conditions))
print('Classification accuracy: {:.4f} / Chance level: {}'.format(
classification_accuracy, chance_level))
Out:
Classification accuracy: 0.6890 / Chance level: 0.125
Total running time of the script: ( 3 minutes 19.433 seconds)