Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
8.10.6. nilearn.plotting.plot_img¶
nilearn.plotting.
plot_img
(img, cut_coords=None, output_file=None, display_mode='ortho', figure=None, axes=None, title=None, threshold=None, annotate=True, draw_cross=True, black_bg=False, colorbar=False, resampling_interpolation='continuous', bg_img=None, vmin=None, vmax=None, **kwargs)¶Plot cuts of a given image (by default Frontal, Axial, and Lateral)
- Parameters
- imgNiimg-like object
See http://nilearn.github.io/manipulating_images/input_output.html
- cut_coordsNone, a tuple of floats, or an integer, optional
The MNI coordinates of the point where the cut is performed If display_mode is ‘ortho’ or ‘tiled’, this should be a 3-tuple: (x, y, z) For display_mode == ‘x’, ‘y’, or ‘z’, then these are the coordinates of each cut in the corresponding direction. If None is given, the cuts is calculated automaticaly. If display_mode is ‘x’, ‘y’ or ‘z’, cut_coords can be an integer, in which case it specifies the number of cuts to perform
- output_filestring, or None, optional
The name of an image file to export the plot to. Valid extensions are .png, .pdf, .svg. If output_file is not None, the plot is saved to a file, and the display is closed.
- display_mode{‘ortho’, ‘tiled’, ‘x’, ‘y’, ‘z’, ‘yx’, ‘xz’, ‘yz’}
Choose the direction of the cuts: ‘x’ - sagittal, ‘y’ - coronal, ‘z’ - axial, ‘ortho’ - three cuts are performed in orthogonal directions, ‘tiled’ - three cuts are performed and arranged in a 2x2 grid. Default=’ortho’.
- figureinteger or matplotlib figure, optional
Matplotlib figure used or its number. If None is given, a new figure is created.
- axesmatplotlib axes or 4 tuple of float: (xmin, ymin, width, height), optional
The axes, or the coordinates, in matplotlib figure space, of the axes used to display the plot. If None, the complete figure is used.
- titlestring, optional
The title displayed on the figure.
- thresholda number, None, or ‘auto’, optional
If None is given, the image is not thresholded. If a number is given, it is used to threshold the image: values below the threshold (in absolute value) are plotted as transparent. If auto is given, the threshold is determined magically by analysis of the image.
- annotateboolean, optional
If annotate is True, positions and left/right annotation are added to the plot. Default=True.
- decimalsinteger, optional
Number of decimal places on slice position annotation. If False (default), the slice position is integer without decimal point.
- draw_crossboolean, optional
If draw_cross is True, a cross is drawn on the plot to indicate the cut plosition. Default=True.
- black_bgboolean, optional
If True, the background of the image is set to be black. If you wish to save figures with a black background, you will need to pass “facecolor=’k’, edgecolor=’k’” to matplotlib.pyplot.savefig. Default=False.
- colorbarboolean, optional
If True, display a colorbar on the right of the plots. Default=False.
- resampling_interpolationstr, optional
Interpolation to use when resampling the image to the destination space. Can be “continuous” to use 3rd-order spline interpolation, or “nearest” to use nearest-neighbor mapping. “nearest” is faster but can be noisier in some cases. Default=’continuous’.
- bg_imgNiimg-like object, optional
See http://nilearn.github.io/manipulating_images/input_output.html The background image that the ROI/mask will be plotted on top of. If nothing is specified, no background image is plotted.
- vminfloat, optional
Lower bound of the colormap. If None, the min of the image is used.
- vmaxfloat, optional
Upper bound of the colormap. If None, the max of the image is used.
- kwargsextra keyword arguments, optional
Extra keyword arguments passed to matplotlib.pyplot.imshow.