Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
8.10.16. nilearn.plotting.plot_carpet¶
- nilearn.plotting.- plot_carpet(img, mask_img=None, mask_labels=None, detrend=True, output_file=None, figure=None, axes=None, vmin=None, vmax=None, title=None, cmap=<matplotlib.colors.LinearSegmentedColormap object>)¶
- Plot an image representation of voxel intensities across time. - This figure is also known as a “grayplot” or “Power plot”. - Parameters
- imgNiimg-like object
- 4D image. See http://nilearn.github.io/manipulating_images/input_output.html. 
- mask_imgNiimg-like object or None, optional
- Limit plotted voxels to those inside the provided mask (default is None). If a 3D atlas is provided, voxels will be grouped by atlas value and a colorbar will be added to the left side of the figure with atlas labels. If not specified, a new mask will be derived from data. See http://nilearn.github.io/manipulating_images/input_output.html. 
- mask_labelsdict, optional
- If - mask_imgcorresponds to an atlas, then this dictionary maps values from the- mask_imgto labels. Dictionary keys are labels and values are values within the atlas.
- detrendbool, optional
- Detrend and z-score the data prior to plotting. Default=True. 
- output_filestror None, optional
- The name of an image file to which to export the plot (default is None). Valid extensions are .png, .pdf, and .svg. If output_file is not None, the plot is saved to a file, and the display is closed. 
- figurematplotlib.figure.Figureor None, optional
- Matplotlib figure used (default is None). If None is given, a new figure is created. 
- axesmatplotlib axes or None, optional
- The axes used to display the plot (default is None). If None, the complete figure is used. 
- vminfloat or None, optional
- Lower bound for plotting, passed to matplotlib.pyplot.imshow. If None, vmin will be automatically determined based on the data. Default=None. 
- vmaxfloat or None, optional
- Upper bound for plotting, passed to matplotlib.pyplot.imshow. If None, vmax will be automatically determined based on the data. Default=None. 
- titlestror None, optional
- The title displayed on the figure (default is None). 
- cmapmatplotlib colormap, optional
- The colormap for the sidebar, if an atlas is used. Default=plt.cm.gist_ncar. 
 
- Returns
- figurematplotlib.figure.Figure
- Figure object with carpet plot. 
 
- figure
 - Notes - This figure was originally developed in [1]. - In cases of long acquisitions (>800 volumes), the data will be downsampled to have fewer than 800 volumes before being plotted. - References - 1
- Power, J. D. (2017). A simple but useful way to assess fMRI scan qualities. Neuroimage, 154, 150-158. doi: https://doi.org/10.1016/j.neuroimage.2016.08.009 
 
 
 