Note

This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

8.12.15.10. nilearn.glm.first_level.run_glm

nilearn.glm.first_level.run_glm(Y, X, noise_model='ar1', bins=100, n_jobs=1, verbose=0)

GLM fit for an fMRI data matrix

Parameters
Yarray of shape (n_time_points, n_voxels)

The fMRI data.

Xarray of shape (n_time_points, n_regressors)

The design matrix.

noise_model{‘ar1’, ‘ols’}, optional

The temporal variance model. Default=’ar1’.

binsint, optional

Maximum number of discrete bins for the AR(1) coef histogram. Default=100.

n_jobsint, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’. Default=1.

verboseint, optional

The verbosity level. Defaut=0.

Returns
labelsarray of shape (n_voxels,),

A map of values on voxels used to identify the corresponding model.

resultsdict,

Keys correspond to the different labels values values are RegressionResults instances corresponding to the voxels.