Note

This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

8.12.13. nilearn.glm.cluster_level_inference

nilearn.glm.cluster_level_inference(stat_img, mask_img=None, threshold=3.0, alpha=0.05, verbose=False)

Report the proportion of active voxels for all clusters defined by the input threshold.

This implements the method described in [1].

Parameters
stat_imgNiimg-like object or None, optional

statistical image (presumably in z scale)

mask_imgNiimg-like object, optional,

mask image

thresholdlist of floats, optional

Cluster-forming threshold in z-scale. Default=3.0.

alphafloat or list, optional

Level of control on the true positive rate, aka true dsicovery proportion. Default=0.05.

verbosebool, optional

Verbosity mode. Default=False.

Returns
proportion_true_discoveries_imgNifti1Image

The statistical map that gives the true positive.

Notes

This function is experimental. It may change in any future release of Nilearn.

References

1

Rosenblatt JD, Finos L, Weeda WD, Solari A, Goeman JJ. All-Resolutions Inference for brain imaging. Neuroimage. 2018 Nov 1;181:786-796. doi: 10.1016/j.neuroimage.2018.07.060

8.12.13.1. Examples using nilearn.glm.cluster_level_inference