Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
8.3.6. nilearn.decoding.SpaceNetRegressor¶
- class nilearn.decoding.SpaceNetRegressor(penalty='graph-net', l1_ratios=0.5, alphas=None, n_alphas=10, mask=None, target_affine=None, target_shape=None, low_pass=None, high_pass=None, t_r=None, max_iter=200, tol=0.0001, memory=Memory(location=None), memory_level=1, standardize=True, verbose=1, n_jobs=1, eps=0.001, cv=8, fit_intercept=True, screening_percentile=20.0, debias=False)¶
- Regression learners with sparsity and spatial priors. - SpaceNetRegressor implements Graph-Net and TV-L1 priors / penalties for regression problems. Thus, the penalty is a sum an L1 term and a spatial term. The aim of such a hybrid prior is to obtain weights maps which are structured (due to the spatial prior) and sparse (enforced by L1 norm). - Parameters
- penaltystring, optional (default ‘graph-net’)
- Penalty to used in the model. Can be ‘graph-net’ or ‘tv-l1’. 
- l1_ratiosfloat or list of floats in the interval [0, 1]; optional (default .5)
- Constant that mixes L1 and spatial prior terms in penalization. l1_ratio == 1 corresponds to pure LASSO. The larger the value of this parameter, the sparser the estimated weights map. If list is provided, then the best value will be selected by cross-validation. 
- alphasfloat or list of floats, optional (default None)
- Choices for the constant that scales the overall regularization term. This parameter is mutually exclusive with the n_alphas parameter. If None or list of floats is provided, then the best value will be selected by cross-validation. 
- n_alphasint, optional (default 10).
- Generate this number of alphas per regularization path. This parameter is mutually exclusive with the alphas parameter. 
- epsfloat, optional (default 1e-3)
- Length of the path. For example, - eps=1e-3means that- alpha_min / alpha_max = 1e-3
- maskfilename, niimg, NiftiMasker instance, optional (default None)
- Mask to be used on data. If an instance of masker is passed, then its mask will be used. If no mask is it will be computed automatically by a MultiNiftiMasker with default parameters. 
- target_affine3x3 or 4x4 matrix, optional (default None)
- This parameter is passed to image.resample_img. Please see the related documentation for details. 
- target_shape3-tuple of integers, optional (default None)
- This parameter is passed to image.resample_img. Please see the related documentation for details. 
- low_pass: None or float, optional
- This parameter is passed to signal.clean. Please see the related documentation for details 
- high_pass: None or float, optional
- This parameter is passed to signal.clean. Please see the related documentation for details 
- t_rfloat, optional (default None)
- This parameter is passed to signal.clean. Please see the related documentation for details 
- screening_percentilefloat in the interval [0, 100]; Optional (default 20)
- Percentile value for ANOVA univariate feature selection. A value of 100 means ‘keep all features’. This percentile is is expressed w.r.t the volume of a standard (MNI152) brain, and so is corrected at runtime to correspond to the volume of the user-supplied mask (which is typically smaller). 
- standardizebool, optional (default True):
- If set, then we’ll center the data (X, y) have mean zero along axis 0. This is here because nearly all linear models will want their data to be centered. 
- fit_interceptbool, optional (default True)
- Fit or not an intercept. 
- max_iterint (default 200)
- Defines the iterations for the solver. 
- tolfloat
- Defines the tolerance for convergence. Defaults to 1e-4. 
- verboseint, optional (default 1)
- Verbosity level. 
- n_jobsint, optional (default 1)
- Number of jobs in solving the sub-problems. 
- memory: instance of joblib.Memory or string
- Used to cache the masking process. By default, no caching is done. If a string is given, it is the path to the caching directory. 
- memory_level: integer, optional (default 1)
- Rough estimator of the amount of memory used by caching. Higher value means more memory for caching. 
- cvint, a cv generator instance, or None (default 8)
- The input specifying which cross-validation generator to use. It can be an integer, in which case it is the number of folds in a KFold, None, in which case 3 fold is used, or another object, that will then be used as a cv generator. 
- debias: bool, optional (default False)
- If set, then the estimated weights maps will be debiased. 
 
- Attributes
- `all_coef_`ndarray, shape (n_l1_ratios, n_folds, n_features)
- Coefficients for all folds and features. 
- `alpha_grids_`ndarray, shape (n_folds, n_alphas)
- Alpha values considered for selection of the best ones (saved in best_model_params_) 
- `best_model_params_`ndarray, shape (n_folds, n_parameter)
- Best model parameters (alpha, l1_ratio) saved for the different cross-validation folds. 
- `coef_`ndarray, shape (n_features,)
- Coefficient of the features in the decision function. 
- `coef_img_`nifti image
- Masked model coefficients 
- `mask_`ndarray 3D
- An array contains values of the mask image. 
- `masker_`instance of NiftiMasker
- The nifti masker used to mask the data. 
- `mask_img_`Nifti like image
- The mask of the data. If no mask was supplied by the user, this attribute is the mask image computed automatically from the data X. 
- `memory_`joblib memory cache
- `intercept_`narray, shape (1)
- Intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True. 
- `cv_`list of pairs of lists
- Each pair is the list of indices for the train and test samples for the corresponding fold. 
- `cv_scores_`ndarray, shape (n_folds, n_alphas) or (n_l1_ratios, n_folds, n_alphas)
- Scores (misclassification) for each alpha, and on each fold 
- `screening_percentile_`float
- Screening percentile corrected according to volume of mask, relative to the volume of standard brain. 
- `w_`ndarray, shape (n_features,)
- Model weights 
- `ymean_`array, shape (n_samples,)
- Mean of prediction targets 
- `Xmean_`array, shape (n_features,)
- Mean of X across samples 
- `Xstd_`array, shape (n_features,)
- Standard deviation of X across samples 
 
 - __init__(penalty='graph-net', l1_ratios=0.5, alphas=None, n_alphas=10, mask=None, target_affine=None, target_shape=None, low_pass=None, high_pass=None, t_r=None, max_iter=200, tol=0.0001, memory=Memory(location=None), memory_level=1, standardize=True, verbose=1, n_jobs=1, eps=0.001, cv=8, fit_intercept=True, screening_percentile=20.0, debias=False)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - SUPPORTED_LOSSES= ['mse', 'logistic']¶
 - SUPPORTED_PENALTIES= ['graph-net', 'tv-l1']¶
 - check_params()¶
- Makes sure parameters are sane 
 - decision_function(X)¶
- Predict confidence scores for samples - The confidence score for a sample is the signed distance of that sample to the hyperplane. - Parameters
- X{array-like, sparse matrix}, shape = (n_samples, n_features)
- Samples. 
 
- Returns
- array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)
- Confidence scores per (sample, class) combination. In the binary case, confidence score for self.classes_[1] where >0 means this class would be predicted. 
 
 
 - fit(X, y)¶
- Fit the learner - Parameters
- Xlist of Niimg-like objects
- See http://nilearn.github.io/manipulating_images/input_output.html Data on which model is to be fitted. If this is a list, the affine is considered the same for all. 
- yarray or list of length n_samples
- The dependent variable (age, sex, QI, etc.). 
 
 - Notes - selfSpaceNet object
- Model selection is via cross-validation with bagging. 
 
 - get_params(deep=True)¶
- Get parameters for this estimator. - Parameters
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns
- paramsdict
- Parameter names mapped to their values. 
 
 
 - predict(X)¶
- Predict class labels for samples in X. - Parameters
- Xlist of Niimg-like objects
- See http://nilearn.github.io/manipulating_images/input_output.html Data on prediction is to be made. If this is a list, the affine is considered the same for all. 
 
- Returns
- y_predndarray, shape (n_samples,)
- Predicted class label per sample. 
 
 
 - score(X, y, sample_weight=None)¶
- Return the coefficient of determination  of the prediction. of the prediction.- The coefficient  is defined as is defined as , where , where is the residual sum of squares is the residual sum of squares- ((y_true - y_pred) ** 2).sum()and is the total sum of squares is the total sum of squares- ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a score of 0.0. score of 0.0.- Parameters
- Xarray-like of shape (n_samples, n_features)
- Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape - (n_samples, n_samples_fitted), where- n_samples_fittedis the number of samples used in the fitting for the estimator.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- True values for X. 
- sample_weightarray-like of shape (n_samples,), default=None
- Sample weights. 
 
- Returns
- scorefloat
 of of- self.predict(X)wrt. y.
 
 - Notes - The  score used when calling score used when calling- scoreon a regressor uses- multioutput='uniform_average'from version 0.23 to keep consistent with default value of- r2_score. This influences the- scoremethod of all the multioutput regressors (except for- MultiOutputRegressor).
 - set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
- Estimator parameters. 
 
- Returns
- selfestimator instance
- Estimator instance. 
 
 
 
 
 
