Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
8.2.5. nilearn.datasets.fetch_atlas_difumo¶
nilearn.datasets.
fetch_atlas_difumo
(dimension=64, resolution_mm=2, data_dir=None, resume=True, verbose=1)¶Fetch DiFuMo brain atlas
Dictionaries of Functional Modes, or “DiFuMo”, can serve as atlases to extract functional signals with different dimensionalities (64, 128, 256, 512, and 1024). These modes are optimized to represent well raw BOLD timeseries, over a with range of experimental conditions. See [1].
- Parameters
- dimensionint, optional
Number of dimensions in the dictionary. Valid resolutions available are {64, 128, 256, 512, 1024}. Default=64.
- resolution_mmint, optional
The resolution in mm of the atlas to fetch. Valid options available are {2, 3}. Default=2mm.
- data_dirstring, optional
Path where data should be downloaded. By default, files are downloaded in home directory.
- resumebool, optional
Whether to resumed download of a partly-downloaded file. Default=True.
- verboseint, optional
Verbosity level (0 means no message). Default=1.
- Returns
- datasklearn.datasets.base.Bunch
Dictionary-like object, the interest attributes are :
‘maps’: str, 4D path to nifti file containing regions definition.
‘labels’: Numpy recarray containing the labels of the regions.
‘description’: str, general description of the dataset.
Notes
Direct download links from OSF:
References
- 1
Dadi, K., Varoquaux, G., Machlouzarides-Shalit, A., Gorgolewski, KJ., Wassermann, D., Thirion, B., Mensch, A. Fine-grain atlases of functional modes for fMRI analysis. NeuroImage, Elsevier, 2020, pp.117126, https://hal.inria.fr/hal-02904869