Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
8.1.2. nilearn.connectome.GroupSparseCovariance¶
- class nilearn.connectome.GroupSparseCovariance(alpha=0.1, tol=0.001, max_iter=10, verbose=0, memory=Memory(location=None), memory_level=0)¶
- Covariance and precision matrix estimator. - The model used has been introduced in [1], and the algorithm used is based on what is described in [2]. - Parameters
- alphafloat, optional
- regularization parameter. With normalized covariances matrices and number of samples, sensible values lie in the [0, 1] range(zero is no regularization: output is not sparse). Default=0.1. 
- tolpositive float, optional
- The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. Default=1e-3. 
- max_iterint, optional
- maximum number of iterations. The default value is rather conservative. Default=10. 
- verboseint, optional
- verbosity level. Zero means “no message”. Default=0. 
- memoryinstance of joblib.Memory or string, optional
- Used to cache the masking process. By default, no caching is done. If a string is given, it is the path to the caching directory. 
- memory_levelint, optional
- Caching aggressiveness. Higher values mean more caching. Default=0. 
 
 - References - 1
- Gael Varoquaux, et al. Brain Covariance Selection: Better Individual Functional Connectivity Models Using Population Prior’. 
- 2
- Jean Honorio and Dimitris Samaras, “Simultaneous and Group-Sparse Multi-Task Learning of Gaussian Graphical Models”. http://arxiv.org/abs/1207.4255. 
 - Attributes
- `covariances_`numpy.ndarray, shape (n_features, n_features, n_subjects)
- empirical covariance matrices. 
- `precisions_`numpy.ndarraye, shape (n_features, n_features, n_subjects)
- precisions matrices estimated using the group-sparse algorithm. 
 
 - __init__(alpha=0.1, tol=0.001, max_iter=10, verbose=0, memory=Memory(location=None), memory_level=0)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - fit(subjects, y=None)¶
- Fits the group sparse precision model according to the given training data and parameters. - Parameters
- subjectslist of numpy.ndarray with shapes (n_samples, n_features)
- input subjects. Each subject is a 2D array, whose columns contain signals. Sample number can vary from subject to subject, but all subjects must have the same number of features (i.e. of columns). 
 
- Returns
- selfGroupSparseCovariance instance
- the object itself. Useful for chaining operations. 
 
 
 - get_params(deep=True)¶
- Get parameters for this estimator. - Parameters
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns
- paramsdict
- Parameter names mapped to their values. 
 
 
 - set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
- Estimator parameters. 
 
- Returns
- selfestimator instance
- Estimator instance. 
 
 
 
