9.3.9. Decoding of a dataset after GLM fit for signal extraction

Full step-by-step example of fitting a GLM to perform a decoding experiment. We use the data from one subject of the Haxby dataset.

More specifically:

  1. Download the Haxby dataset.

  2. Extract the information to generate a glm representing the blocks of stimuli.

  3. Analyze the decoding performance using a classifier.

To run this example, you must launch IPython via ipython --matplotlib in a terminal, or use the Jupyter notebook.

9.3.9.1. Fetch example Haxby dataset

We download the Haxby dataset This is a study of visual object category representation

# By default 2nd subject will be fetched
import numpy as np
import pandas as pd
from nilearn import datasets
haxby_dataset = datasets.fetch_haxby()

# repetition has to be known
TR = 2.5

9.3.9.2. Load the behavioral data

# Load target information as string and give a numerical identifier to each
behavioral = pd.read_csv(haxby_dataset.session_target[0], sep=' ')
conditions = behavioral['labels'].values

# Record these as an array of sessions
sessions = behavioral['chunks'].values
unique_sessions = behavioral['chunks'].unique()

# fMRI data: a unique file for each session
func_filename = haxby_dataset.func[0]

9.3.9.3. Build a proper event structure for each session

events = {}
# events will take  the form of a dictionary of Dataframes, one per session
for session in unique_sessions:
    # get the condition label per session
    conditions_session = conditions[sessions == session]
    # get the number of scans per session, then the corresponding
    # vector of frame times
    n_scans = len(conditions_session)
    frame_times = TR * np.arange(n_scans)
    # each event last the full TR
    duration = TR * np.ones(n_scans)
    # Define the events object
    events_ = pd.DataFrame(
        {'onset': frame_times, 'trial_type': conditions_session, 'duration': duration})
    # remove the rest condition and insert into the dictionary
    events[session] = events_[events_.trial_type != 'rest']

9.3.9.4. Instantiate and run FirstLevelModel

We generate a list of z-maps together with their session and condition index

z_maps = []
conditions_label = []
session_label = []

# Instantiate the glm
from nilearn.glm.first_level import FirstLevelModel
glm = FirstLevelModel(t_r=TR,
                      mask_img=haxby_dataset.mask,
                      high_pass=.008,
                      smoothing_fwhm=4,
                      memory='nilearn_cache')

9.3.9.5. Run the glm on data from each session

events[session].trial_type.unique()
from nilearn.image import index_img
for session in unique_sessions:
    # grab the fmri data for that particular session
    fmri_session = index_img(func_filename, sessions == session)

    # fit the glm
    glm.fit(fmri_session, events=events[session])

    # set up contrasts: one per condition
    conditions = events[session].trial_type.unique()
    for condition_ in conditions:
        z_maps.append(glm.compute_contrast(condition_))
        conditions_label.append(condition_)
        session_label.append(session)

Out:

________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f882c548250>, <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.114769, ..., -2.149296],
       ...,
       [ 2.367151, ...,  0.779998]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.256013, ...,  0.308334]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.038572, ...,  0.855077]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.070285, ..., -1.222001]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.1724  , ...,  0.033508]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.96724 , ..., -1.474856]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.432136, ..., -1.197805]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.420626, ..., -0.443207]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.310409, ..., 0.196496]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f881e57b550>, <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 12.660587, ..., -13.536042],
       ...,
       [ -3.254408, ..., -33.842804]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.705774, ..., -0.934083]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.476069, ..., -1.29404 ]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.210752, ..., -1.441079]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.341707, ...,  2.094528]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.097247, ..., -0.496306]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.118812, ...,  1.58503 ]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.801345, ..., -1.648133]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.621172, ..., -0.678871]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f882042e1c0>, <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 5.205584, ..., 26.587189],
       ...,
       [-6.836576, ..., 10.676956]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.733742, ..., -0.444561]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.502666, ..., 1.811852]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.690828, ...,  0.730153]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.403789, ...,  0.254288]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.472767, ..., -1.174186]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.07507 , ..., -2.221482]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.445359, ..., -0.363018]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.034083, ..., 0.362042]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8822d75700>, <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-2.026206, ...,  5.974948],
       ...,
       [ 2.616334, ...,  0.104535]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.596132, ..., -1.910225]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.217544, ..., -0.003551]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.337751, ..., 0.789979]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.161412, ..., -0.265537]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.538844, ..., -0.797649]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.589617, ..., -0.790328]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.306331, ..., -0.003053]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.20477 , ..., -0.804061]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f881e666ee0>, <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 53.033577, ..., -55.45955 ],
       ...,
       [-51.57195 , ..., -55.994713]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.161983, ..., -0.068078]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.467058, ..., -0.494102]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.008358, ..., 0.250096]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.127065, ..., -0.241985]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.066426, ..., 0.493324]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.049242, ..., -1.008997]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.336253, ..., -0.596381]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.707037, ..., 1.358865]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8822d62b20>, <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-27.150482, ...,  -5.81308 ],
       ...,
       [-30.204891, ...,   7.417917]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.18641 , ...,  1.581644]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.553131, ...,  0.392603]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.960821, ...,  1.15444 ]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.7086  , ...,  1.094486]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.26815 , ...,  0.542739]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.321163, ..., -0.019244]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.288938, ..., -0.355821]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.222105, ..., -0.420629]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8822c3f670>, <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[129.51173 , ..., -15.279282],
       ...,
       [-18.911755, ...,  21.839058]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.490124, ..., -0.665442]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.374685, ..., -0.980248]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.654133, ..., -0.288692]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.244312, ..., -1.462072]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.665202, ...,  1.793466]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.036326, ..., 0.693956]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.672634, ..., -0.24818 ]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.099764, ..., -1.722951]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f882c548ee0>, <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.6s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-15.915996, ...,  22.07737 ],
       ...,
       [-16.981215, ...,   3.372383]], dtype=float32),
array([[ 0.      , ...,  1.      ],
       ...,
       [-0.259023, ...,  1.      ]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.033872, ..., -0.317176]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.98478 , ..., -0.770334]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.127461, ..., 0.929068]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.489347, ..., -0.230229]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.673052, ...,  0.6757  ]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.260282, ..., -0.346342]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.775541, ..., 1.603123]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([3.391727, ..., 0.653312]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8820674b50>, <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.292987, ..., 18.392956],
       ...,
       [-3.935719, ...,  0.602484]], dtype=float32),
array([[ 0.      , ...,  1.      ],
       ...,
       [-0.259023, ...,  1.      ]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.620911, ...,  2.309993]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.44548 , ..., 0.576334]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.483355, ..., -0.068969]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.166576, ..., 0.713549]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.612744, ..., 1.441012]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.254934, ..., -1.288018]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.134169, ..., -0.621367]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.234171, ..., -1.497943]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8822e7bd90>, <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-5.223948, ..., -5.959582],
       ...,
       [-7.677519, ..., 16.024363]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.01344 , ...,  1.283233]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.79114 , ..., 1.031069]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.583575, ..., 0.488828]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.265741, ..., -0.623721]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.20672, ...,  1.09668]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.045178, ...,  0.822339]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.463833, ..., -0.151504]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.230311, ...,  0.198537]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f882315df10>, <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-19.66533 , ...,  -6.299562],
       ...,
       [-24.647343, ...,   2.331865]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.080165, ..., -3.497239]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-3.083184, ..., -3.071235]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.724401, ..., -2.892927]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.044506, ..., 0.285176]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.257372, ..., 1.802962]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.485481, ...,  0.284696]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.032135, ..., -1.290339]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.417132, ..., -1.258094]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8822eb61f0>, <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'sample_mask': None,
  'sessions': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.6s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-1.095605, ..., 16.449202],
       ...,
       [ 2.59974 , ..., -2.179998]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.545625, ..., -1.041515]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.152042, ..., 1.145641]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.55236 , ..., 0.696758]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.684509, ...,  0.226524]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.423531, ..., -0.641954]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.726779, ..., 0.687642]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.809306, ...,  0.496974]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.116436, ..., -0.811166]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min

9.3.9.6. Generating a report

Since we have already computed the FirstLevelModel and have the contrast, we can quickly create a summary report.

from nilearn.image import mean_img
from nilearn.reporting import make_glm_report
mean_img_ = mean_img(func_filename)
report = make_glm_report(glm,
                         contrasts=conditions,
                         bg_img=mean_img_,
                         )

report  # This report can be viewed in a notebook

Statistical Report for bottle, cat, chair, face, house, scissors, scrambledpix, shoe

First Level Model

Model details:

drift_modelcosine
drift_order1
fir_delays[0]
high_pass (Hz)0.008
hrf_modelglover
noise_modelar1
scaling_axis0
signal_scalingTrue
slice_time_ref0
smoothing_fwhm4
standardizeFalse
subject_labelNone
t_r (s)2.5
target_affineNone
target_shapeNone

Design Matrix:

Plot of Design Matrix used in Session 1.

Contrasts

Plot of the contrast: bottle.Plot of the contrast: house.Plot of the contrast: chair.Plot of the contrast: scrambledpix.Plot of the contrast: face.Plot of the contrast: shoe.Plot of the contrast: cat.Plot of the contrast: scissors.

Mask

Model did not supply a mask image.

Stat Maps with Cluster Tables

bottle

Stat map plot for the contrast: bottle
Contrast Plot Plot of the contrast: bottle.

Cluster Table
Height controlfpr
α0.001
Threshold (computed)3.3
Cluster size threshold (voxels)0
Minimum distance (mm)8

Cluster IDXYZPeak StatCluster Size (mm3)
1-36.75-46.88-46.886.61147
2-54.2513.125.626.4798
3-1.75-39.3813.126.45196
4-57.75-39.389.386.17246
533.25-43.12-43.126.111722
5a22.75-35.62-43.125.78
5b15.75-46.88-39.384.33
5c12.25-46.88-46.884.11
6-40.25-35.62-35.626.07393
7-19.25-24.38-43.125.99492
7a-19.25-31.88-39.385.47
829.75-20.62-24.385.98393
9-43.7528.12-9.385.96196
108.75-50.62-35.625.88492
1119.25-54.38-43.125.781476
11a12.25-58.12-28.125.44
11b8.75-58.12-39.384.44
1240.2516.88-20.625.7349
1322.75-46.88-61.885.70492
13a22.75-58.12-61.885.38
1426.25-46.88-46.885.69147
15-1.75-50.62-39.385.66147
16-26.25-16.88-24.385.64147
1712.25-28.12-73.125.60246
18-50.7535.62-16.885.58246
19-33.25-73.1231.885.5649
20-15.75-28.12-43.125.5549
2119.25-76.88-13.125.50492
22-12.25-24.38-76.885.46196
23-47.25-13.1213.125.4298
2426.25-20.62-13.125.41344
25-29.759.38-28.125.38246
2622.75-43.129.385.38246
27-57.75-16.881.885.3498
28-47.25-61.88-5.625.2998
29-40.25-39.3831.885.27344
29a-29.75-39.3831.884.36
30-19.25-50.62-39.385.26147
31-12.255.62-16.885.2549
32-29.75-43.12-50.625.24393
338.75-91.885.625.2449
341.7550.62-16.885.19344
35-50.75-50.6220.625.17147
3643.75-50.62-5.625.17935
36a47.25-43.12-1.884.41
36b50.75-50.62-5.624.15
3726.259.38-16.885.16196
385.25-76.8824.385.1549
39-29.75-84.381.885.1449
4026.25-69.38-16.885.14246
41-54.25-31.88-13.125.1449
42-47.25-9.385.625.10295
4333.255.62-13.125.10246
4412.25-84.38-28.125.0798
45-29.75-80.62-24.385.0549
46-40.2524.38-9.385.0449
47-54.25-46.88-5.625.0298
4826.2531.88-31.885.02147
495.25-61.88-20.625.02295
5012.25-13.12-28.125.0298
5129.751.88-9.385.0198
52-47.25-39.38-20.625.01885
52a-50.75-39.38-9.384.50
53-19.25-58.12-9.385.00196
5433.2520.62-20.625.0098
55-33.2513.1228.124.93246
56-47.25-28.1213.124.90147
571.75-43.12-1.884.9049
58-22.75-58.12-46.884.89147
59-15.75-76.8828.124.88196
6033.259.38-24.384.8898
61-43.7550.6216.884.8749
62-61.25-5.6220.624.87147
63-40.25-20.62-31.884.8749
64-50.7516.88-1.884.86147
65-15.75-50.62-1.884.8649
6640.25-35.62-24.384.862067
66a43.75-28.12-9.384.70
66b40.25-20.62-13.124.57
66c47.25-35.62-20.624.13
671.75-58.12-24.384.8598
6822.75-20.62-35.624.8498
6936.7528.12-35.624.8449
70-15.7516.8843.124.82147
7112.25-65.62-24.384.81246
72-47.25-28.125.624.8198
7329.75-50.62-50.624.77246
7419.25-43.12-20.624.75147
7536.75-65.62-13.124.75344
76-1.75-58.12-54.384.7349
7719.2535.6228.124.7249
78-40.25-61.88-16.884.70295
79-22.751.88-1.884.6949
8022.75-16.88-9.384.6998
8133.2531.88-9.384.6998
82-8.75-46.88-65.624.68246
835.25-73.1216.884.67344
83a-1.75-65.6216.883.95
8422.75-20.62-28.124.67295
84a12.25-20.62-31.884.46
85-15.75-1.88-69.384.6549
86-47.2535.6216.884.65196
8712.2520.6235.624.6449
88-26.25-20.62-13.124.6498
89-15.75-31.88-61.884.6349
90-47.25-54.38-9.384.62344
9150.7543.12-5.624.6149
92-29.7513.12-13.124.60196
9340.2531.8813.124.5949
9412.25-54.38-46.884.5998
95-15.75-39.38-50.624.5849
96-5.25-13.12-69.384.5849
97-5.25-31.8858.124.5749
98-1.7558.1213.124.5749
99-12.25-58.12-16.884.5649
100-12.25-13.12-46.884.55246
101-19.25-76.88-28.124.55147
1028.75-20.62-13.124.55147
1031.75-76.8835.624.5549
104-36.75-76.881.884.55246
105-61.25-20.6213.124.5449
106-1.75-9.38-20.624.5449
10722.75-35.6254.384.54246
108-57.75-9.389.384.53295
108a-61.25-1.889.384.24
109-47.25-28.1243.124.5249
110-47.2516.885.624.5298
1118.75-16.8846.884.5249
112-12.25-58.12-46.884.5249
113-36.7543.1224.384.5198
114-22.75-76.88-16.884.5149
115-29.75-58.12-9.384.5149
116-47.2520.62-13.124.5049
1171.7513.129.384.5049
11815.75-1.88-16.884.50196
11933.25-9.38-58.124.5098
12050.75-5.625.624.4949
12133.25-50.62-20.624.49246
122-50.759.38-16.884.48196
12340.2535.62-1.884.4849
12450.751.8843.124.4898
1258.75-50.62-20.624.4849
126-1.75-46.881.884.4698
12715.759.3843.124.4698
128-40.25-65.62-5.624.4549
129-40.259.38-28.124.45147
130-15.759.38-20.624.4598
13112.25-9.3813.124.4549
132-26.25-54.3846.884.4398
133-15.75-76.8820.624.4349
134-50.75-16.8824.384.4249
135-50.75-5.62-5.624.4249
13626.2528.12-20.624.4298
13740.255.62-24.384.4249
138-50.759.389.384.4149
139-50.7516.88-13.124.41147
14057.7535.6228.124.4098
14133.2524.3839.384.3849
142-15.7524.38-9.384.3849
14322.75-61.88-46.884.38147
144-40.25-46.881.884.38147
145-12.2554.38-9.384.3798
1465.25-88.12-1.884.3749
147-15.7513.1250.624.3698
148-36.7528.1231.884.36246
14919.25-1.8828.124.3549
1501.75-5.62-13.124.3549
151-47.25-24.38-16.884.3598
152-26.2513.1246.884.3549
1535.25-35.62-58.124.3598
15436.75-73.125.624.3498
155-33.25-9.38-13.124.34344
156-15.75-9.3828.124.34295
157-19.25-54.38-61.884.33196
158-8.755.62-24.384.3349
15968.25-13.12-9.384.32246
159a68.25-1.88-9.384.29
16019.25-35.6269.384.3249
161-29.75-80.62-9.384.3249
16219.25-9.3820.624.3249
163-1.75-1.881.884.32196
16436.75-61.88-5.624.3149
165-15.75-54.3843.124.3149
166-40.25-28.12-20.624.3149
16719.25-31.8816.884.3149
16815.75-1.88-1.884.3149
169-15.75-16.8824.384.3098
170-36.7558.1235.624.2949
17112.25-80.6213.124.29147
172-1.75-24.389.384.2949
173-1.75-54.38-9.384.2898
174-43.7543.12-28.124.2898
1755.25-58.12-54.384.2849
17654.25-24.38-5.624.28344
177-57.75-31.88-5.624.2849
17815.7550.6258.124.2798
17933.25-50.62-28.124.2749
180-5.2531.88-20.624.26147
18115.75-35.6231.884.2698
182-47.25-65.621.884.26196
183-54.25-20.62-24.384.2549
18426.25-80.62-9.384.2549
18522.7516.885.624.24147
1865.25-65.62-13.124.23196
187-47.2524.3820.624.2398
188-47.25-58.1213.124.2398
18940.259.38-20.624.2398
19019.2528.1231.884.2349
19112.2550.62-1.884.2398
19247.25-54.38-16.884.2349
19312.2561.885.624.2249
19419.25-9.385.624.2249
195-57.75-31.8824.384.2298
196-19.25-20.62-35.624.2198
19719.25-84.38-20.624.2149
19812.2543.12-16.884.2149
199-1.75-9.38-46.884.2149
20015.75-24.38-35.624.21246
201-5.25-24.38-20.624.20147
202-1.75-50.62-1.884.2049
20315.75-73.12-31.884.2049
204-47.25-28.1228.124.2049
20536.75-31.88-9.384.20246
20612.255.6243.124.1949
207-1.7576.885.624.1949
2085.25-80.62-1.884.1949
209-29.7520.62-24.384.1849
210-57.755.6213.124.1898
21147.25-54.38-1.884.1849
2121.75-5.62-54.384.1849
21340.25-58.125.624.1798
21426.255.6216.884.17246
215-8.759.3824.384.17196
21619.25-5.6243.124.1798
217-22.75-69.38-13.124.16196
218-1.75-58.12-28.124.1698
21919.2565.629.384.1698
220-61.25-16.889.384.1649
22136.7543.12-28.124.1549
222-1.75-39.381.884.1598
22312.251.8828.124.15147
22429.75-28.12-24.384.1549
22519.2516.8828.124.1549
22640.25-35.62-43.124.1549
227-22.75-50.6254.384.1549
228-22.7516.885.624.1549
229-36.7520.6235.624.14246
230-26.25-73.12-35.624.1498
231-43.7524.38-1.884.1498
2328.7520.62-24.384.13147
23326.25-5.62-1.884.1249
234-54.251.8813.124.1249
235-33.25-31.88-65.624.1298
236-15.75-20.62-58.124.1249
237-8.75-46.88-31.884.1249
238-1.75-50.62-24.384.12147
239-12.2554.3854.384.1198
240-47.2546.8820.624.1149
241-15.75-1.8816.884.1049
242-29.7524.3813.124.1098
243-57.75-46.88-1.884.10246
244-50.75-20.629.384.1098
24519.25-13.1228.124.1049
24622.7546.88-16.884.1049
24719.25-39.38-13.124.0949
248-19.2565.6239.384.0949
249-1.75-9.38-5.624.0949
250-1.751.8813.124.0849
251-8.75-39.38-31.884.0849
252-40.25-16.88-50.624.0849
253-43.75-39.38-16.884.07147
25419.2513.12-1.884.0798
25522.755.62-1.884.0749
256-8.75-39.38-39.384.06442
256a-12.25-46.88-43.123.77
257-19.2561.885.624.0649
25854.25-20.6239.384.0649
25954.25-9.3820.624.06147
26022.75-69.381.884.06147
261-50.7539.389.384.0549
262-19.25-5.62-24.384.04393
26333.255.6228.124.0349
264-36.7543.121.884.02147
26519.25-69.38-13.124.0249
26612.25-9.385.624.0249
26712.25-88.125.624.0298
268-26.25-76.8835.624.0249
269-47.25-43.129.384.02147
27033.25-24.38-13.124.0149
27140.25-43.12-28.124.0149
27229.75-24.38-16.884.0149
273-40.2516.8824.384.0098
27426.25-20.62-65.624.0098
275-47.25-39.3816.884.0049
276-43.7520.6220.624.0049
277-15.75-73.12-13.124.0049
278-1.7513.12-20.623.9998
27957.75-39.385.623.9949
280-29.75-65.62-20.623.9949
281-19.25-50.6216.883.9949
2825.25-61.88-46.883.9849
28322.7531.889.383.9849
284-19.25-65.62-20.623.9849
28515.75-16.88-58.123.9849
28619.25-13.12-28.123.9898
287-47.25-13.12-54.383.9798
2881.75-1.8831.883.9798
28936.75-39.38-69.383.9749
290-1.75-35.62-61.883.9698
291-8.7539.385.623.9649
29226.2520.62-24.383.9698
293-5.25-84.38-20.623.9649
2948.7576.8835.623.95147
295-22.7531.88-24.383.9549
296-26.2546.885.623.95147
297-22.75-9.3813.123.9549
298-33.2513.1213.123.9498
29915.7588.129.383.9498
3005.25-43.12-9.383.9449
301-47.25-13.1235.623.9349
302-8.75-54.38-31.883.9349
30312.25-13.1231.883.9298
304-54.25-28.12-16.883.9249
305-12.25-20.62-61.883.9249
30650.75-54.38-9.383.9249
30768.25-31.889.383.91196
30812.25-1.88-69.383.9198
30919.2516.8816.883.91147
310-33.25-16.88-5.623.9149
3115.25-28.12-9.383.9149
312-5.2546.8854.383.9098
313-43.7516.8858.123.9049
314-33.251.88-16.883.90147
3155.25-65.6254.383.90147
316-68.25-24.381.883.90147
317-64.75-13.12-24.383.9049
31829.75-43.12-58.123.9049
3191.75-43.12-16.883.90295
319a12.25-39.38-13.123.81
320-47.25-58.12-28.123.9049
32133.255.6235.623.8998
32250.75-13.125.623.8949
32319.25-24.3816.883.8949
324-33.25-69.3839.383.8949
32515.75-73.12-20.623.8949
32664.75-43.125.623.8949
327-36.75-31.88-46.883.8849
328-15.75-73.1239.383.8898
329-43.7550.6228.123.8749
33019.25-84.3824.383.8749
331-5.25-46.88-16.883.87147
332-8.75-65.62-43.123.8749
3331.75-58.129.383.8749
334-47.251.88-28.123.8749
33529.75-50.6254.383.87147
3368.7546.88-5.623.8749
33726.25-80.621.883.8749
338-33.2535.62-24.383.8698
339-19.25-13.1261.883.8649
34012.25-35.6273.123.8698
34143.7531.885.623.8649
342-57.751.88-13.123.8698
3438.7513.1250.623.8598
344-26.255.62-13.123.8549
3458.75-24.389.383.8549
346-12.25-20.62-46.883.8549
347-26.251.8843.123.8598
34812.2524.3861.883.8549
349-47.25-61.8820.623.8549
35019.25-58.12-13.123.8549
351-22.75-5.62-1.883.8549
35226.25-61.8831.883.8549
353-29.7535.62-9.383.8549
35447.2513.12-20.623.8549
3551.75-9.38-50.623.8549
356-15.75-50.62-31.883.84196
35715.75-46.8820.623.8449
358-12.25-31.88-50.623.84196
35950.7550.62-1.883.8449
36061.251.8824.383.8349
3611.75-31.881.883.8249
36236.75-54.38-20.623.8249
36326.25-16.88-58.123.8249
364-15.75-46.88-5.623.8149
36547.2520.625.623.8149
36622.75-28.1269.383.8198
36740.25-20.6220.623.8149
368-43.75-65.6224.383.8149
369-19.25-61.8820.623.8149
37015.7516.88-16.883.8049
37129.75-31.8839.383.80147
372-12.2546.8828.123.8049
37312.2569.385.623.8049
37415.75-20.62-20.623.8049
37529.75-58.12-46.883.7949
37622.75-24.381.883.7949
377-29.75-20.62-69.383.7949
378-47.25-1.88-20.623.7949
37943.75-69.38-1.883.7949
3805.25-28.1273.123.7949
38119.2535.621.883.7898
38247.2513.125.623.7898
383-15.75-5.6261.883.7898
384-8.7584.3820.623.77147
38526.2524.3813.123.7798
38619.25-9.38-5.623.7749
38715.75-16.885.623.7749
388-1.75-28.1258.123.7649
389-29.75-1.88-1.883.7549
39026.251.8813.123.7549
391-40.2535.6231.883.7449
39236.7550.621.883.7498
393-1.7580.621.883.7449
394-57.75-9.3816.883.74147
39540.25-9.38-31.883.7449
3961.7524.3831.883.7349
39733.2543.1235.623.7349
398-15.7520.62-43.123.7398
39943.759.38-39.383.7349
40026.2513.129.383.7349
40133.25-9.38-9.383.7349
40240.25-28.12-1.883.7349
40329.75-16.88-61.883.7349
40422.75-76.88-35.623.7398
405-8.75-46.88-24.383.7349
4061.75-20.62-35.623.7349
40719.2554.381.883.7349
408-26.25-31.8816.883.7249
40947.2531.88-24.383.7249
410-54.2513.1220.623.72147
411-33.25-43.12-61.883.7249
41219.25-16.8816.883.7249
413-19.25-84.381.883.7249
41447.2516.88-39.383.7249
41540.25-31.8854.383.7198
41661.25-31.8839.383.7149
417-54.25-24.38-39.383.7149
41826.25-20.6265.623.7149
41936.75-73.12-9.383.7149
42029.75-1.88-20.623.7149
421-12.25-9.38-24.383.7149
42215.75-31.88-50.623.7149
423-15.755.6265.623.7149
4241.759.38-16.883.7049
425-22.75-20.62-31.883.7049
4268.75-73.1235.623.7049
42736.75-54.38-28.123.7049
42843.75-39.38-1.883.7049
429-33.25-35.62-9.383.7049
430-50.7528.1246.883.6949
431-15.75-43.121.883.6949
432-1.75-43.12-31.883.6998
43350.75-16.8828.123.6849
43443.75-5.62-13.123.6849
43557.75-20.6228.123.6849
436-47.2546.8828.123.6849
43715.75-20.6273.123.6849
4381.7565.62-16.883.6898
439-22.7513.12-24.383.6749
440-33.2516.8850.623.6798
441-15.75-43.12-43.123.6798
442-1.7520.62-16.883.6798
443-26.25-28.12-31.883.6749
444-15.75-69.3828.123.6649
445-47.259.38-9.383.6649
446-15.75-1.88-31.883.6649
447-29.75-1.88-24.383.6698
44826.251.88-13.123.6649
44933.25-24.38-58.123.6649
450-40.25-58.129.383.6698
4511.7520.62-39.383.6598
45247.2516.8839.383.6549
453-26.25-35.6254.383.6549
45422.75-16.8843.123.6549
45512.2524.38-39.383.6549
456-1.75-16.88-28.123.6449
45733.25-39.38-58.123.6449
45826.25-20.6220.623.6449
459-8.75-61.88-46.883.6449
46019.255.62-13.123.6449
46126.25-9.3813.123.6398
46233.2543.1224.383.6349
46319.25-9.3835.623.6349
464-54.25-20.62-9.383.6349
465-5.25-39.385.623.6349
46622.75-54.3861.883.6249
467-22.75-80.621.883.6249
46840.25-35.6250.623.6249
46922.75-1.885.623.6249
47043.75-69.389.383.6198
47133.25-58.12-16.883.6149
47219.25-31.88-16.883.6149
4731.7565.62-9.383.6149
474-12.2588.1216.883.6149
475-47.2561.881.883.6149
476-26.2513.1213.123.6149
477-33.25-1.8813.123.6149
47840.2528.12-39.383.6149
47943.7524.38-5.623.6149
480-50.75-58.121.883.6149
48126.25-76.88-16.883.6049
482-1.75-9.38-28.123.6049
483-5.25-54.38-54.383.6049
484-47.25-9.3843.123.6049
48519.25-35.62-20.623.59147
486-22.7543.12-28.123.5949
487-36.75-16.88-46.883.5949
48847.2539.3813.123.5898
4898.75-65.6220.623.5849
49029.7516.8835.623.5849
49122.7546.8813.123.5849
492-29.75-80.6220.623.5849
49368.25-28.1216.883.5749
494-19.2543.12-1.883.5749
49519.25-24.38-39.383.5749
496-8.75-9.38-20.623.5749
49726.25-80.62-28.123.5749
49815.7520.6243.123.5649
49919.25-46.8831.883.5649
50022.7573.125.623.5649
50150.75-43.129.383.5649
50226.25-58.12-13.123.5649
503-57.75-24.385.623.5649
504-1.75-9.3831.883.5649
505-15.75-50.6239.383.5649
506-57.7539.3816.883.5698
50712.25-9.3850.623.5649
508-12.25-13.12-73.123.5598
509-26.25-61.8831.883.5549
510-33.2539.3854.383.5549
51154.251.8835.623.5549
51229.75-31.88-31.883.5549
513-33.2565.6220.623.5549
514-54.25-9.38-5.623.5498
51536.7550.62-16.883.5449
51615.7528.12-39.383.5449
51736.75-24.38-31.883.5449
518-36.7561.889.383.5449
5191.75-1.88-20.623.5349
52012.25-65.621.883.5349
52129.7565.6243.123.5349
52247.25-35.6216.883.5349
523-40.25-50.6228.123.5349
52433.25-28.1265.623.5349
5255.255.62-69.383.5349
526-1.75-1.88-5.623.5249
527-1.75-46.88-65.623.5249
52812.25-54.38-54.383.5249
529-5.2543.12-16.883.5249
53012.25-9.38-24.383.5249
531-50.75-1.8816.883.5249
532-29.7535.62-1.883.5249
53312.25-35.629.383.5249
53436.7535.6216.883.52147
535-15.75-69.38-43.123.5249
536-33.25-58.12-1.883.5249
537-40.25-69.3831.883.5249
538-54.25-13.1213.123.5198
5398.7528.12-24.383.5149
540-36.75-13.129.383.5049
541-54.25-20.62-50.623.5049
54236.7520.6231.883.5049
54326.25-65.6246.883.5049
5448.75-76.889.383.5049
545-47.25-24.38-5.623.4949
546-5.25-61.8820.623.4949
54715.7576.8835.623.4949
548-50.75-16.88-13.123.4998
5495.25-73.12-16.883.4949
55015.7528.12-5.623.4949
55119.25-28.12-24.383.4949
55219.25-50.62-73.123.4949
55319.2520.6220.623.4949
554-36.7535.62-13.123.4949
5551.75-16.88-24.383.4949
55622.755.625.623.4998
55712.25-84.38-5.623.4849
55833.25-35.62-5.623.4849
55950.7539.38-9.383.4849
56022.75-5.6220.623.4849
561-50.7546.889.383.4898
56254.251.88-31.883.4849
56340.25-31.88-58.123.4849
56440.25-76.88-9.383.4749
565-36.75-31.8820.623.4749
56636.751.8820.623.4749
56740.25-9.381.883.4749
56822.7513.1235.623.4798
56933.255.6250.623.4749
570-50.755.62-9.383.4749
57140.25-35.62-1.883.4749
572-50.75-9.38-13.123.4649
573-29.7524.385.623.4649
574-26.25-35.62-9.383.4649
575-15.75-16.88-28.123.4698
576-47.25-50.625.623.4649
57719.25-5.6213.123.4549
57822.75-9.38-50.623.4549
579-5.259.389.383.4598
580-33.251.8831.883.4549
581-19.25-50.62-46.883.4549
582-1.75-16.88-58.123.4549
58336.7524.38-13.123.4549
584-1.75-35.62-13.123.4549
585-15.759.3835.623.45147
586-43.75-35.62-9.383.4549
58722.75-9.3843.123.4549
58833.2550.6224.383.4549
5891.75-65.62-43.123.4549
590-29.7516.88-5.623.4449
59143.75-31.88-39.383.4449
59226.259.3824.383.4449
593-54.2524.3824.383.4449
59443.751.88-1.883.4449
59529.75-16.8858.123.4449
59654.25-16.881.883.4498
597-36.75-69.3813.123.4449
598-5.25-43.1269.383.4449
59915.75-50.629.383.4349
600-36.75-69.385.623.4349
601-26.25-31.88-58.123.4349
60215.751.8835.623.4349
603-29.75-43.1258.123.4349
604-1.7543.12-20.623.4349
605-19.25-65.629.383.4349
60612.25-35.62-61.883.4349
607-33.25-9.38-46.883.4349
608-1.75-16.8824.383.4349
609-54.25-16.88-5.623.4349
61047.2528.12-39.383.4349
611-36.7516.881.883.4349
61247.25-9.385.623.4249
613-19.251.8858.123.4249
614-26.25-24.38-5.623.4249
61536.75-31.8813.123.4249
616-43.7513.1213.123.4298
61712.2550.629.383.4249
6188.75-50.62-5.623.4149
619-33.25-35.6246.883.4149
620-54.25-35.62-5.623.4149
62119.2543.12-5.623.4149
62212.25-1.8824.383.4149
62350.75-50.629.383.4149
62422.7539.3820.623.4049
625-1.75-39.38-16.883.4049
626-15.75-1.881.883.4098
6271.75-84.38-16.883.4049
628-47.2516.88-24.383.4049
629-47.2543.129.383.4049
6305.25-9.38-20.623.4049
631-57.751.8820.623.4049
6325.2580.6231.883.4049
633-64.75-35.62-1.883.4049
634-1.75-43.12-9.383.4049
635-54.25-9.3820.623.4049
6361.75-69.3846.883.4049
637-8.75-54.389.383.3998
638-12.25-5.62-20.623.3949
63912.25-9.3843.123.3949
64012.25-35.62-16.883.3949
641-5.251.88-58.123.3949
64212.25-35.6265.623.3949
64333.25-13.1265.623.3849
64419.25-69.3820.623.3849
64519.25-31.88-54.383.3849
64629.75-39.38-54.383.3849
647-47.25-16.88-24.383.3749
648-36.759.3854.383.3749
649-8.7543.1224.383.3749
650-26.25-5.6265.623.3749
651-33.25-39.38-28.123.3649
65233.2543.12-16.883.3649
65343.75-58.12-1.883.3649
65429.75-43.12-20.623.3649
65550.75-16.8835.623.3649
656-19.2558.1239.383.3649
657-36.7561.8816.883.3649
658-1.75-28.1220.623.3598
65912.25-69.385.623.3549
660-19.25-43.1231.883.3598
661-1.75-76.881.883.3549
66233.25-20.62-9.383.3549
663-12.2520.6273.123.3549
664-8.7513.12-13.123.3549
66561.25-35.6235.623.3549
66643.75-9.3846.883.3449
6671.7528.12-5.623.3449
66847.255.62-1.883.3498
66915.75-5.6228.123.3449
67015.75-13.12-73.123.3449
67154.251.889.383.3449
67222.759.3846.883.3449
67326.2516.88-20.623.3449
67440.25-5.62-9.383.3349
675-40.25-5.6235.623.3349
67661.255.6231.883.3349
67729.75-1.88-54.383.3349
6781.75-9.38-16.883.3349
67919.25-13.1273.123.3349
680-12.2516.8820.623.3349
68115.7546.8846.883.3349
682-43.75-61.889.383.3349
68347.25-20.6220.623.3349
684-5.25-61.8854.383.3349
685-1.75-69.38-13.123.3249
68650.75-20.62-43.123.3249
687-33.2546.8835.623.3249
68854.25-39.38-24.383.3249
6891.7584.381.883.3249
690-12.25-76.88-9.383.3249
691-43.7516.88-1.883.3249
692-15.7520.6220.623.3249
693-33.259.3816.883.3249
694-29.759.3861.883.3149
6951.75-5.6224.383.3149
69640.2513.12-46.883.3149
6971.75-58.12-13.123.3149
698-5.25-13.12-61.883.3149
6991.751.88-16.883.3149
70012.25-50.6239.383.3149
701-36.755.62-9.383.3149
70212.25-61.8816.883.3149
70322.75-50.6235.623.3149
70419.25-46.88-5.623.3149
70512.25-50.62-1.883.3049
706-12.25-16.88-65.623.3049
707-19.2524.3831.883.3049
70847.255.6231.883.3049
7095.2546.8813.123.3049
710-22.75-28.1231.883.3049
71133.25-76.88-28.123.3049
71222.7520.6216.883.2949
7135.25-16.88-20.623.2949
714-54.25-46.8813.123.2949

house

Stat map plot for the contrast: house
Contrast Plot Plot of the contrast: house.

Cluster Table
Height controlfpr
α0.001
Threshold (computed)3.3
Cluster size threshold (voxels)0
Minimum distance (mm)8

Cluster IDXYZPeak StatCluster Size (mm3)
122.7520.629.385.62639
2-22.7524.3813.125.01147
347.25-54.38-16.885.0098
422.75-5.6220.624.9949
522.7513.1220.624.8898
6-15.7524.389.384.79639
733.2528.1228.124.6498
8-22.75-39.38-1.884.59246
8a-22.75-28.12-1.884.38
912.2524.3820.624.57147
10-29.7528.125.624.5649
11-22.7516.885.624.3998
121.7531.88-13.124.3349
13-22.755.6224.384.29147
1419.25-16.8824.384.2898
15-15.75-35.62-1.884.2598
1619.255.6243.124.2598
17-12.25-43.12-50.624.2549
188.75-24.3824.384.2149
19-50.759.38-28.124.2049
20-33.25-24.3835.624.1949
211.7513.12-16.884.1949
22-12.25-16.88-20.624.1849
23-8.7535.6243.124.1649
24-22.7539.3846.884.15147
2526.25-24.38-69.384.1449
2650.7550.62-1.884.1449
2722.75-31.881.884.1149
28-12.2513.121.884.1198
29-15.7520.6220.624.1049
308.75-9.3831.884.09147
31-12.25-28.12-76.884.0949
32-15.75-46.8820.624.0898
3326.25-61.8831.884.0549
3436.75-54.38-20.624.0149
3515.75-54.385.624.0049
36-12.251.88-61.884.0098
37-33.25-58.1235.623.9949
38-54.25-20.62-9.383.9749
39-26.259.3820.623.9798
40-15.7520.621.883.9649
4115.75-28.1224.383.9249
4215.75-39.3813.123.9249
4322.75-16.8816.883.9149
4422.7516.885.623.9049
4533.25-43.12-35.623.8949
46-29.7516.889.383.8949
478.75-16.8831.883.8949
4826.259.38-31.883.8749
4922.75-43.129.383.8649
5043.75-1.8820.623.8649
51-40.25-58.1228.123.8549
5222.75-43.12-31.883.8449
53-22.7520.6220.623.8398
54-15.7531.885.623.8349
5536.75-13.12-31.883.8349
56-54.25-13.12-1.883.8249
575.25-20.62-13.123.8249
58-29.75-31.8835.623.8149
5926.2513.1213.123.7949
60-26.2513.1216.883.7849
6133.255.62-39.383.7549
6240.2531.88-24.383.7449
635.25-65.6254.383.7349
64-15.75-20.62-28.123.7349
6526.25-1.8813.123.7249
66-15.7558.125.623.7249
6726.255.629.383.7249
68-15.75-50.6224.383.7149
6950.75-31.88-50.623.7049
70-8.751.8828.123.6898
7133.2554.3828.123.6749
72-47.25-76.889.383.6749
7333.2513.12-5.623.6649
748.7520.6220.623.6549
75-33.25-73.12-31.883.6498
7612.25-31.88-73.123.6349
775.2531.8850.623.6349
78-12.25-39.3846.883.6349
79-19.2561.8820.623.6249
8040.25-39.3813.123.6249
8140.25-13.12-43.123.6249
82-22.75-24.3846.883.6149
83-33.259.385.623.6149
8433.25-76.88-24.383.6049
8529.75-50.62-39.383.6049
86-1.75-61.88-39.383.6049
8715.75-1.88-16.883.5949
88-33.2513.12-1.883.5849
89-43.75-9.3839.383.5849
9033.2528.12-46.883.5849
9126.259.38-24.383.5749
92-19.2531.8820.623.5749
93-36.75-39.38-46.883.5749
948.7543.12-5.623.5649
958.75-61.88-50.623.5649
96-5.2539.38-20.623.5698
9722.75-13.1220.623.5649
9840.25-50.62-54.383.5698
9933.259.381.883.5549
1001.75-46.88-5.623.5549
101-1.75-58.12-28.123.5549
102-12.25-5.62-13.123.5498
103-15.7531.8824.383.5449
10457.75-54.381.883.5349
105-40.25-1.8824.383.5249
10622.75-39.3846.883.5249
107-26.251.8813.123.5149
108-22.75-9.38-65.623.5149
109-36.75-65.62-16.883.5149
110-26.25-50.62-46.883.5149
11126.25-73.1231.883.5049
11226.25-13.1254.383.5049
11315.75-50.629.383.5049
114-36.7524.3813.123.5049
115-33.2561.8839.383.5049
11619.25-73.12-16.883.4998
117-40.25-69.3820.623.4949
118-12.25-43.12-16.883.4849
11964.751.8835.623.4849
120-8.75-24.381.883.4849
12122.75-76.8820.623.4749
122-50.7531.889.383.4749
12357.75-16.8816.883.4649
12450.75-43.12-1.883.4449
12550.7513.129.383.4349
126-64.75-5.6228.123.4349
127-15.75-24.38-9.383.4349
12843.7520.6216.883.4349
129-64.75-24.38-20.623.4249
1305.25-43.12-1.883.4249
1311.7554.38-9.383.4249
132-8.75-46.88-31.883.4249
133-8.75-28.125.623.4249
134-15.75-61.8843.123.4249
13529.751.8813.123.4249
13636.7528.1239.383.4149
13719.25-58.1220.623.4149
13829.75-65.62-24.383.4149
13922.75-9.3813.123.4149
14036.75-50.62-24.383.4049
14136.75-61.88-13.123.4049
142-15.75-31.88-50.623.4049
143-40.25-28.12-24.383.4049
144-40.25-46.8839.383.4049
14522.75-73.12-13.123.3949
14622.75-9.3835.623.3949
14722.75-65.6220.623.3949
14829.75-16.8846.883.3949
149-26.2520.62-1.883.3849
15015.75-1.8869.383.3849
151-22.75-58.1224.383.3749
15257.7516.88-1.883.3749
153-40.2524.3835.623.3749
15426.255.62-28.123.3649
155-15.7516.8813.123.3549
15612.251.8828.123.3549
157-5.2528.1213.123.3549
15815.7524.38-13.123.3449
159-8.7528.1228.123.3449
160-12.25-58.12-46.883.3449
161-12.25-65.62-39.383.3449
16219.2524.385.623.3449
163-22.75-16.8824.383.3349
164-12.2543.1246.883.3349
165-15.75-69.3846.883.3349
16626.25-16.88-9.383.3249
167-26.25-31.88-69.383.3249
16826.25-50.62-35.623.3249
169-36.75-24.381.883.3249
17019.25-35.621.883.3249
17161.25-9.3816.883.3149
17236.7520.62-13.123.3149
1738.75-80.62-5.623.3149
17422.751.8820.623.3049
17536.7528.121.883.3049
17612.25-5.62-5.623.3049
177-40.2550.621.883.3049
178-15.75-28.12-5.623.2949
17929.75-54.38-24.383.2949

chair

Stat map plot for the contrast: chair
Contrast Plot Plot of the contrast: chair.

Cluster Table
Height controlfpr
α0.001
Threshold (computed)3.3
Cluster size threshold (voxels)0
Minimum distance (mm)8

Cluster IDXYZPeak StatCluster Size (mm3)
140.25-46.8813.124.86147
2-36.75-76.881.884.2349
312.2535.62-5.624.2049
4-50.7539.3816.884.1749
5-50.75-39.38-1.883.94147
6-54.25-43.1246.883.9049
733.25-58.12-1.883.8949
8-29.75-43.12-58.123.8849
9-36.75-61.8843.123.8449
1019.2520.6220.623.7849
1112.255.62-24.383.7798
1222.7524.3816.883.7649
1333.2543.12-16.883.7549
1426.25-46.88-35.623.7549
15-15.75-1.88-16.883.7449
1626.2516.8816.883.7349
17-5.2543.1250.623.6749
1833.2513.12-1.883.6649
19-57.75-9.38-1.883.6249
20-22.75-31.88-69.383.6149
21-22.7524.3813.123.5749
22-57.7513.121.883.5249
2333.25-58.12-16.883.5049
24-29.7520.6246.883.4849
2512.2516.88-20.623.4449
2633.2528.12-31.883.4349
2736.75-24.3820.623.4349
2843.75-28.12-13.123.4049
2929.7513.12-43.123.3949
3012.2528.12-16.883.3849
31-22.75-43.12-31.883.3749
32-1.755.6231.883.3749
3333.25-20.62-58.123.3549
34-15.75-35.62-24.383.3449
3529.75-43.12-35.623.3449
36-22.759.3824.383.3449
37-36.75-46.88-54.383.3349
3833.259.38-13.123.3349
391.7528.12-35.623.3249
4036.75-28.12-9.383.2949

scrambledpix

Stat map plot for the contrast: scrambledpix
Contrast Plot Plot of the contrast: scrambledpix.

Cluster Table
Height controlfpr
α0.001
Threshold (computed)3.3
Cluster size threshold (voxels)0
Minimum distance (mm)8

Cluster IDXYZPeak StatCluster Size (mm3)
11.7524.38-13.125.7449
2-22.75-46.8843.124.8298
3-15.7561.88-9.384.79147
4-29.75-61.88-31.884.6549
550.7516.88-28.124.14147
6-22.75-54.38-9.383.9449
75.2543.12-28.123.9249
8-22.75-9.3820.623.8249
940.25-16.88-39.383.8049
10-64.75-31.8839.383.7849
11-26.25-69.3839.383.5949
1222.75-24.3846.883.5649
1322.7546.88-5.623.5449
14-1.755.6231.883.5349
15-40.25-16.88-54.383.4649
16-15.75-43.12-16.883.4449
1733.2535.62-28.123.4449
1826.25-24.38-69.383.4049
191.7513.1231.883.3449
2033.25-20.6243.123.3349

face

Stat map plot for the contrast: face
Contrast Plot Plot of the contrast: face.

Cluster Table
Height controlfpr
α0.001
Threshold (computed)3.3
Cluster size threshold (voxels)0
Minimum distance (mm)8

Cluster IDXYZPeak StatCluster Size (mm3)
11.7524.38-13.125.1798
2-50.75-50.6213.125.09196
2a-47.25-58.1213.123.37
3-47.25-43.12-35.624.7449
468.25-13.12-9.384.71147
5-47.25-39.3816.884.5098
629.75-46.8835.624.4049
729.75-54.3846.884.3849
8-33.2550.6216.884.37147
9-57.75-16.881.884.37147
10-36.7531.8816.884.2298
11-12.25-58.12-16.884.2249
12-26.2524.38-13.124.16147
13-40.2546.8813.124.1498
1422.75-50.62-24.384.1149
15-22.7539.3813.124.0949
16-15.7513.1273.124.0298
1740.2528.1239.384.0198
185.2520.6265.623.9549
195.25-24.38-20.623.9349
20-47.25-50.6220.623.8849
2143.7535.6235.623.8398
22-47.25-28.1228.123.80147
23-1.7531.8861.883.7998
24-54.25-43.1220.623.7749
25-8.7513.1265.623.7749
261.75-43.12-1.883.7549
27-8.75-46.88-31.883.7349
28-47.25-61.88-5.623.7249
29-19.25-73.1239.383.7249
30-26.25-88.12-9.383.7198
3112.2528.1261.883.7149
32-50.75-35.6243.123.7049
33-36.75-43.1239.383.70147
34-47.2524.3820.623.6949
35-36.75-31.88-46.883.6949
36-47.25-54.38-9.383.6949
3740.2543.1216.883.6949
38-57.75-9.38-1.883.6749
39-57.7531.8831.883.6749
405.25-58.12-24.383.6698
41-36.7531.8835.623.65147
4233.25-46.88-39.383.6449
43-43.75-31.8835.623.6249
44-40.25-43.12-16.883.6049
45-12.25-76.8828.123.6049
46-8.75-28.1261.883.5849
4719.25-16.8839.383.5649
4826.25-43.1235.623.5649
4943.75-54.389.383.5349
5019.25-46.88-20.623.5349
51-29.7531.88-9.383.5249
5240.25-39.38-24.383.5149
5336.7561.8828.123.5149
54-15.75-73.1216.883.5049
558.75-1.889.383.5049
56-47.25-46.8816.883.4949
57-22.75-46.88-50.623.4949
5822.7531.8828.123.4949
5912.25-58.12-20.623.4849
605.25-65.6213.123.4849
61-47.25-16.88-35.623.4849
62-19.25-61.88-9.383.4749
63-15.75-13.1224.383.4798
64-26.25-43.12-43.123.4749
65-12.25-39.3858.123.4649
66-1.7539.38-20.623.4649
6726.25-43.12-31.883.4649
6833.25-61.88-13.123.4549
695.2531.88-35.623.4549
70-40.2550.6220.623.4349
71-50.75-28.1235.623.4249
7215.75-54.38-20.623.4149
7336.75-43.125.623.4049
74-40.25-35.62-35.623.4049
75-33.2539.3854.383.3949
76-15.75-54.3850.623.3849
7729.75-35.6235.623.3849
78-43.75-39.38-9.383.3649
79-29.7528.1239.383.3649
80-29.7528.1213.123.3549
81-1.75-20.6224.383.3549
8226.25-54.38-20.623.3549
8333.25-58.12-16.883.3449
84-47.25-31.885.623.3449
85-1.75-39.385.623.3349
8657.75-35.6243.123.3349
87-40.2520.6254.383.3249
88-47.25-46.88-31.883.3249
89-33.2531.8846.883.3249
90-8.75-58.12-43.123.3049
91-33.25-58.1220.623.2949

shoe

Stat map plot for the contrast: shoe
Contrast Plot Plot of the contrast: shoe.

Cluster Table
Height controlfpr
α0.001
Threshold (computed)3.3
Cluster size threshold (voxels)0
Minimum distance (mm)8

Cluster IDXYZPeak StatCluster Size (mm3)
122.75-9.3835.624.7449
261.2524.3831.884.22147
336.7546.88-16.883.9549
450.75-35.62-35.623.8349
522.75-69.38-28.123.8249
619.25-20.62-28.123.8149
719.2573.1220.623.7649
8-54.25-65.6216.883.7049
9-19.2520.6243.123.6949
10-47.25-16.88-24.383.6649
11-1.75-28.12-73.123.6549
1219.25-28.12-54.383.5949
1315.75-24.38-73.123.5749
14-68.25-20.6224.383.5649
15-68.25-9.389.383.5349
1626.25-46.88-24.383.5249
17-1.75-20.6224.383.5249
1836.7528.1239.383.4549
1915.7516.8858.123.4349
2033.259.3861.883.4349
21-12.251.88-69.383.3749
2226.25-61.8813.123.3649
23-29.759.3835.623.3649
241.75-24.38-39.383.3649
25-12.2539.3865.623.3649
2612.255.6231.883.3349
2764.75-1.8831.883.3249
2826.2535.6228.123.3049

cat

Stat map plot for the contrast: cat
Contrast Plot Plot of the contrast: cat.

Cluster Table
Height controlfpr
α0.001
Threshold (computed)3.3
Cluster size threshold (voxels)0
Minimum distance (mm)8

Cluster IDXYZPeak StatCluster Size (mm3)
1-12.25-76.8831.884.6898
243.75-5.6216.884.53196
3-15.75-20.62-58.124.4198
4-40.25-65.6213.124.3649
51.7535.62-13.124.2949
6-12.25-58.12-16.884.2749
75.25-61.88-24.384.2798
843.755.621.884.26344
9-1.7550.62-9.384.25246
105.25-24.38-73.124.2249
1122.75-61.88-54.384.0449
1215.75-16.8846.884.0249
1319.25-31.88-69.383.9849
1422.75-24.38-58.123.9849
15-64.75-9.38-24.383.9849
1636.759.38-35.623.9649
1736.7569.385.623.9198
1812.25-61.88-31.883.8698
191.7528.12-35.623.8549
2047.251.88-46.883.8249
218.75-65.62-24.383.8249
22-29.7539.3854.383.8149
2315.75-31.88-61.883.7649
245.25-80.629.383.7549
2543.7524.389.383.7249
2640.25-5.62-5.623.7049
2750.7528.1224.383.7049
2822.75-58.12-61.883.7049
29-40.25-46.8816.883.7049
305.2543.1250.623.6349
31-12.25-73.12-31.883.6249
32-26.25-80.6213.123.5798
3350.751.88-24.383.5749
34-54.25-46.885.623.5798
35-40.25-69.3835.623.5349
3636.7528.12-20.623.5349
378.7516.88-16.883.5349
385.2520.6250.623.5349
39-47.25-31.88-43.123.5249
40-5.25-50.62-13.123.5049
41-29.75-46.885.623.4849
42-40.25-5.6250.623.4849
4329.751.88-31.883.4749
44-8.75-35.62-24.383.4449
4561.25-31.8843.123.4449
465.25-31.88-69.383.4349
47-22.7565.6239.383.4298
4836.7528.1243.123.38147
49-8.75-46.88-28.123.3649
5012.25-39.38-31.883.3649
51-29.75-20.62-35.623.3549
52-8.75-28.12-61.883.3549
5361.25-31.8820.623.3549
54-47.25-43.1243.123.3449
55-40.25-31.88-58.123.3449
565.25-73.12-20.623.3249
5715.7539.38-20.623.3149
58-36.75-50.62-39.383.3149
5926.25-65.6213.123.3049
6040.25-20.62-39.383.3049

scissors

Stat map plot for the contrast: scissors
Contrast Plot Plot of the contrast: scissors.

Cluster Table
Height controlfpr
α0.001
Threshold (computed)3.3
Cluster size threshold (voxels)0
Minimum distance (mm)8

Cluster IDXYZPeak StatCluster Size (mm3)
1-50.7520.62-24.386.551132
2-19.2584.3820.626.201476
2a-26.2580.6216.884.90
2b-15.7576.8831.884.42
3-26.2524.3828.125.83147
436.7520.62-31.885.61246
529.755.62-5.625.3298
6-12.2520.62-46.885.25344
712.25-35.62-69.385.1498
85.2524.38-46.885.08393
915.7576.8828.125.0549
10-12.2576.8820.625.02935
10a-5.2584.381.884.38
10b-5.2584.3820.624.38
10c-5.2580.6213.124.22
11-19.2561.8850.625.0049
12-1.751.88-61.884.99295
1312.2513.12-43.124.9849
1433.255.62-46.884.9249
151.75-28.12-61.884.8849
16-54.25-39.38-31.884.7949
17-22.75-54.38-50.624.66295
1812.25-61.88-46.884.5649
1912.2580.62-5.624.4949
2036.7528.12-35.624.46295
21-26.25-13.121.884.4549
22-15.75-43.12-46.884.4298
23-29.7520.62-46.884.4198
24-12.259.38-58.124.4198
2526.25-46.881.884.3649
26-5.2580.6231.884.32196
2715.75-35.62-73.124.3249
2812.2513.12-50.624.30344
2950.7524.38-35.624.3098
30-40.2569.3813.124.2749
3140.25-58.12-5.624.2698
32-19.2531.88-35.624.26147
331.7513.12-16.884.2449
3447.2524.38-1.884.2349
351.751.8831.884.22147
361.75-1.88-76.884.2098
37-40.25-9.38-5.624.1749
3815.7588.1216.884.16147
39-12.251.88-28.124.1549
4015.75-16.8846.884.1549
4147.2524.389.384.1449
42-5.25-9.3831.884.1349
4340.2528.12-43.124.1249
441.7576.8816.884.11196
451.75-5.62-80.624.1098
4650.7531.88-31.884.1049
471.75-28.12-76.884.0749
48-54.259.38-16.884.0549
4950.7520.62-1.884.0549
50-40.2561.885.624.0549
51-26.25-24.3820.624.0449
52-47.25-5.62-28.124.0349
53-50.75-9.38-20.624.03196
5422.75-54.38-43.124.0149
55-22.75-5.62-20.624.0149
56-5.25-28.12-76.884.0149
5754.255.6250.624.0198
5840.255.6231.884.0049
59-26.25-1.88-9.383.9998
6029.7576.8813.123.9849
6150.7550.6220.623.9349
62-12.2588.129.383.9149
63-36.75-1.88-20.623.91147
64-29.75-69.389.383.9198
6547.25-1.8820.623.90147
6619.25-16.88-54.383.9049
6757.75-24.385.623.8949
68-19.2550.6213.123.8849
6933.2524.38-43.123.8898
7019.2580.621.883.8798
7112.2580.6235.623.8798
72-26.2531.88-39.383.8649
73-68.25-5.625.623.8698
74-36.7565.6220.623.8598
75-40.25-16.88-65.623.8549
7622.75-58.12-50.623.8549
77-5.251.88-76.883.8549
7812.25-61.889.383.8449
79-36.7569.3816.883.8349
8015.7550.62-9.383.8349
81-26.25-80.62-5.623.8349
8233.25-35.62-35.623.8349
8322.75-1.889.383.8349
84-5.255.62-69.383.8249
855.2513.1231.883.8298
86-5.25-16.88-39.383.8049
8722.7543.12-9.383.8049
88-50.75-13.125.623.8049
89-33.25-65.62-16.883.7949
9043.75-61.885.623.7849
9119.25-1.88-1.883.7649
9222.75-35.62-9.383.7549
9312.2524.38-35.623.7598
9415.7588.129.383.7498
95-8.7524.38-35.623.7449
96-40.2543.12-31.883.7449
97-1.7573.1235.623.7349
9840.25-24.38-35.623.7349
9922.75-20.62-5.623.7249
100-8.7516.88-43.123.7249
10129.75-1.8824.383.7249
10254.251.8843.123.7049
1031.7565.6246.883.7049
104-22.75-39.38-54.383.7049
10529.7558.12-16.883.6949
10640.25-39.3858.123.6849
10726.25-50.62-54.383.6849
108-1.75-35.62-65.623.6698
10919.25-46.88-35.623.6549
110-8.7528.1254.383.65196
1111.7539.38-16.883.6549
1128.75-9.38-76.883.6549
11333.25-5.62-1.883.6498
114-1.7528.12-39.383.6449
1151.75-9.381.883.6349
1161.7580.6224.383.6298
117-47.2524.3820.623.6149
11836.7524.38-28.123.6049
11922.75-43.12-61.883.5949
120-22.7558.12-20.623.5998
12143.75-31.88-13.123.5749
122-22.7554.38-13.123.5549
123-22.7539.3831.883.5449
124-29.7531.88-9.383.5349
12557.7516.8816.883.5349
12615.75-76.88-16.883.5249
12719.2554.3850.623.5249
12815.7546.88-20.623.5249
1291.75-5.62-20.623.5249
13033.25-39.3824.383.5249
131-43.75-24.3835.623.5249
132-12.2565.62-9.383.5249
133-33.2539.3854.383.5149
134-26.2516.8828.123.5149
135-26.2565.6235.623.5049
13629.75-1.8813.123.5049
13712.251.88-69.383.5049
1388.7576.8816.883.4949
139-26.25-28.1231.883.4949
14029.75-9.389.383.4849
14122.7558.12-5.623.4849
142-19.25-20.62-1.883.4849
143-12.25-43.12-13.123.4849
14415.7576.8820.623.4798
145-5.25-1.88-28.123.4749
146-22.7569.3835.623.4749
147-33.2569.3824.383.4698
148-19.25-5.6216.883.4649
149-26.2561.88-5.623.4649
15029.75-46.88-61.883.4649
151-8.7520.6231.883.4549
15233.2524.3861.883.4549
15340.25-1.8861.883.4498
154-33.2543.12-13.123.4449
15554.2535.6235.623.4449
15622.75-20.6220.623.4449
157-19.2531.88-28.123.4349
158-61.25-46.889.383.4349
15919.2516.88-46.883.4349
160-1.75-46.88-1.883.4349
16143.75-9.38-16.883.4349
16257.75-31.8846.883.4249
163-19.25-1.88-35.623.4249
16422.7520.6224.383.4249
165-19.259.38-35.623.4249
166-22.7520.62-46.883.4149
16740.25-43.12-5.623.4149
168-57.75-5.62-1.883.4149
169-5.2539.3858.123.4049
170-47.25-16.88-13.123.4049
171-29.75-13.12-35.623.4049
17233.25-39.38-43.123.4049
1731.7535.62-24.383.4049
17429.759.3816.883.3949
17515.75-28.12-54.383.3849
17622.75-39.3813.123.3849
17729.75-20.62-5.623.3849
17833.25-39.38-20.623.3749
179-26.259.3820.623.3749
180-29.75-16.88-1.883.3649
18150.75-16.88-13.123.3649
182-26.2543.12-28.123.3649
18340.2513.12-39.383.3649
18415.75-39.3824.383.3649
185-12.251.889.383.3549
18626.25-16.88-35.623.3549
18733.255.6216.883.3549
188-19.25-1.88-9.383.3549
18915.75-50.6246.883.3549
190-57.75-9.38-13.123.3549
19115.755.629.383.3549
19229.75-1.881.883.3549
1938.751.8824.383.3549
194-12.25-50.62-50.623.3449
195-33.2528.12-39.383.3449
19626.251.8824.383.3449
197-22.75-88.12-1.883.3449
19833.25-31.88-43.123.3449
199-1.75-13.1231.883.3349
20033.25-20.6243.123.3349
201-15.75-65.625.623.3349
20222.75-9.38-5.623.3249
20329.75-1.8850.623.3249
2045.25-1.885.623.3249
205-15.751.8828.123.3149
206-33.2573.129.383.3149
2071.75-1.88-24.383.3149
20829.75-50.62-50.623.3049
2098.7516.88-39.383.3049
210-19.25-20.62-20.623.3049
21126.2513.12-39.383.3049
21250.75-16.8846.883.3049
21315.7524.3869.383.2949
21429.7554.38-5.623.2949

Built using Nilearn. Source code on GitHub. File bugs & feature requests here.


In a jupyter notebook, the report will be automatically inserted, as above. We have several other ways to access the report:

# report.save_as_html('report.html')
# report.open_in_browser()

9.3.9.7. Build the decoding pipeline

To define the decoding pipeline we use Decoder object, we choose :

  • a prediction model, here a Support Vector Classifier, with a linear kernel

  • the mask to use, here a ventral temporal ROI in the visual cortex

  • although it usually helps to decode better, z-maps time series don’t need to be rescaled to a 0 mean, variance of 1 so we use standardize=False.

  • we use univariate feature selection to reduce the dimension of the problem keeping only 5% of voxels which are most informative.

  • a cross-validation scheme, here we use LeaveOneGroupOut cross-validation on the sessions which corresponds to a leave-one-session-out

We fit directly this pipeline on the Niimgs outputs of the GLM, with corresponding conditions labels and session labels (for the cross validation).

from nilearn.decoding import Decoder
from sklearn.model_selection import LeaveOneGroupOut
decoder = Decoder(estimator='svc', mask=haxby_dataset.mask, standardize=False,
                  screening_percentile=5, cv=LeaveOneGroupOut())
decoder.fit(z_maps, conditions_label, groups=session_label)

# Return the corresponding mean prediction accuracy compared to chance

classification_accuracy = np.mean(list(decoder.cv_scores_.values()))
chance_level = 1. / len(np.unique(conditions))
print('Classification accuracy: {:.4f} / Chance level: {}'.format(
    classification_accuracy, chance_level))

Out:

Classification accuracy: 0.6905 / Chance level: 0.125

Total running time of the script: ( 3 minutes 28.969 seconds)

Gallery generated by Sphinx-Gallery