Note
Click here to download the full example code or to run this example in your browser via Binder
9.3.9. Decoding of a dataset after GLM fit for signal extraction¶
Full step-by-step example of fitting a GLM to perform a decoding experiment. We use the data from one subject of the Haxby dataset.
More specifically:
Download the Haxby dataset.
Extract the information to generate a glm representing the blocks of stimuli.
Analyze the decoding performance using a classifier.
To run this example, you must launch IPython via ipython
--matplotlib in a terminal, or use the Jupyter notebook.
Contents
9.3.9.1. Fetch example Haxby dataset¶
We download the Haxby dataset This is a study of visual object category representation
# By default 2nd subject will be fetched
import numpy as np
import pandas as pd
from nilearn import datasets
haxby_dataset = datasets.fetch_haxby()
# repetition has to be known
TR = 2.5
9.3.9.2. Load the behavioral data¶
# Load target information as string and give a numerical identifier to each
behavioral = pd.read_csv(haxby_dataset.session_target[0], sep=' ')
conditions = behavioral['labels'].values
# Record these as an array of sessions
sessions = behavioral['chunks'].values
unique_sessions = behavioral['chunks'].unique()
# fMRI data: a unique file for each session
func_filename = haxby_dataset.func[0]
9.3.9.3. Build a proper event structure for each session¶
events = {}
# events will take the form of a dictionary of Dataframes, one per session
for session in unique_sessions:
# get the condition label per session
conditions_session = conditions[sessions == session]
# get the number of scans per session, then the corresponding
# vector of frame times
n_scans = len(conditions_session)
frame_times = TR * np.arange(n_scans)
# each event last the full TR
duration = TR * np.ones(n_scans)
# Define the events object
events_ = pd.DataFrame(
{'onset': frame_times, 'trial_type': conditions_session, 'duration': duration})
# remove the rest condition and insert into the dictionary
events[session] = events_[events_.trial_type != 'rest']
9.3.9.4. Instantiate and run FirstLevelModel¶
We generate a list of z-maps together with their session and condition index
z_maps = []
conditions_label = []
session_label = []
# Instantiate the glm
from nilearn.glm.first_level import FirstLevelModel
glm = FirstLevelModel(t_r=TR,
mask_img=haxby_dataset.mask,
high_pass=.008,
smoothing_fwhm=4,
memory='nilearn_cache')
9.3.9.5. Run the glm on data from each session¶
events[session].trial_type.unique()
from nilearn.image import index_img
for session in unique_sessions:
# grab the fmri data for that particular session
fmri_session = index_img(func_filename, sessions == session)
# fit the glm
glm.fit(fmri_session, events=events[session])
# set up contrasts: one per condition
conditions = events[session].trial_type.unique()
for condition_ in conditions:
z_maps.append(glm.compute_contrast(condition_))
conditions_label.append(condition_)
session_label.append(session)
Out:
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f882c548250>, <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.114769, ..., -2.149296],
...,
[ 2.367151, ..., 0.779998]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.256013, ..., 0.308334]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.038572, ..., 0.855077]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.070285, ..., -1.222001]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.1724 , ..., 0.033508]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.96724 , ..., -1.474856]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.432136, ..., -1.197805]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.420626, ..., -0.443207]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.310409, ..., 0.196496]), <nibabel.nifti1.Nifti1Image object at 0x7f88200251f0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f881e57b550>, <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 12.660587, ..., -13.536042],
...,
[ -3.254408, ..., -33.842804]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.705774, ..., -0.934083]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.476069, ..., -1.29404 ]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.210752, ..., -1.441079]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.341707, ..., 2.094528]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.097247, ..., -0.496306]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.118812, ..., 1.58503 ]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.801345, ..., -1.648133]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.621172, ..., -0.678871]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fbdc0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f882042e1c0>, <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 5.205584, ..., 26.587189],
...,
[-6.836576, ..., 10.676956]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.733742, ..., -0.444561]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.502666, ..., 1.811852]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.690828, ..., 0.730153]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.403789, ..., 0.254288]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.472767, ..., -1.174186]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.07507 , ..., -2.221482]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.445359, ..., -0.363018]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.034083, ..., 0.362042]), <nibabel.nifti1.Nifti1Image object at 0x7f8822c54a90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8822d75700>, <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-2.026206, ..., 5.974948],
...,
[ 2.616334, ..., 0.104535]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.596132, ..., -1.910225]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.217544, ..., -0.003551]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.337751, ..., 0.789979]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.161412, ..., -0.265537]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.538844, ..., -0.797649]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.589617, ..., -0.790328]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.306331, ..., -0.003053]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.20477 , ..., -0.804061]), <nibabel.nifti1.Nifti1Image object at 0x7f8822e28910>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f881e666ee0>, <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 53.033577, ..., -55.45955 ],
...,
[-51.57195 , ..., -55.994713]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.161983, ..., -0.068078]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.467058, ..., -0.494102]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.008358, ..., 0.250096]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.127065, ..., -0.241985]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.066426, ..., 0.493324]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.049242, ..., -1.008997]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.336253, ..., -0.596381]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.707037, ..., 1.358865]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5baa90>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8822d62b20>, <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-27.150482, ..., -5.81308 ],
...,
[-30.204891, ..., 7.417917]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.18641 , ..., 1.581644]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.553131, ..., 0.392603]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.960821, ..., 1.15444 ]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.7086 , ..., 1.094486]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.26815 , ..., 0.542739]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.321163, ..., -0.019244]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.288938, ..., -0.355821]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.222105, ..., -0.420629]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d757c0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8822c3f670>, <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[129.51173 , ..., -15.279282],
...,
[-18.911755, ..., 21.839058]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.490124, ..., -0.665442]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.374685, ..., -0.980248]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.654133, ..., -0.288692]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.244312, ..., -1.462072]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.665202, ..., 1.793466]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.036326, ..., 0.693956]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.672634, ..., -0.24818 ]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.099764, ..., -1.722951]), <nibabel.nifti1.Nifti1Image object at 0x7f881f2fb5b0>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f882c548ee0>, <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.6s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-15.915996, ..., 22.07737 ],
...,
[-16.981215, ..., 3.372383]], dtype=float32),
array([[ 0. , ..., 1. ],
...,
[-0.259023, ..., 1. ]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.033872, ..., -0.317176]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.98478 , ..., -0.770334]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.127461, ..., 0.929068]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.489347, ..., -0.230229]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.673052, ..., 0.6757 ]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.260282, ..., -0.346342]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.775541, ..., 1.603123]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([3.391727, ..., 0.653312]), <nibabel.nifti1.Nifti1Image object at 0x7f8822d75220>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8820674b50>, <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.4s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.292987, ..., 18.392956],
...,
[-3.935719, ..., 0.602484]], dtype=float32),
array([[ 0. , ..., 1. ],
...,
[-0.259023, ..., 1. ]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.620911, ..., 2.309993]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.44548 , ..., 0.576334]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.483355, ..., -0.068969]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.166576, ..., 0.713549]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.612744, ..., 1.441012]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.254934, ..., -1.288018]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.134169, ..., -0.621367]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.234171, ..., -1.497943]), <nibabel.nifti1.Nifti1Image object at 0x7f881d808460>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8822e7bd90>, <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-5.223948, ..., -5.959582],
...,
[-7.677519, ..., 16.024363]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.01344 , ..., 1.283233]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.79114 , ..., 1.031069]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.583575, ..., 0.488828]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.265741, ..., -0.623721]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.20672, ..., 1.09668]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.045178, ..., 0.822339]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.463833, ..., -0.151504]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.230311, ..., 0.198537]), <nibabel.nifti1.Nifti1Image object at 0x7f882063b310>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f882315df10>, <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.3s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-19.66533 , ..., -6.299562],
...,
[-24.647343, ..., 2.331865]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.080165, ..., -3.497239]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-3.083184, ..., -3.071235]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.724401, ..., -2.892927]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.044506, ..., 0.285176]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.257372, ..., 1.802962]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.485481, ..., 0.284696]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.032135, ..., -1.290339]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.417132, ..., -1.258094]), <nibabel.nifti1.Nifti1Image object at 0x7f881e5e6520>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.input_data.nifti_masker.filter_and_mask...
filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7f8822eb61f0>, <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>, { 'detrend': False,
'dtype': None,
'high_pass': None,
'high_variance_confounds': False,
'low_pass': None,
'reports': True,
'sample_mask': None,
'sessions': None,
'smoothing_fwhm': 4,
'standardize': False,
'standardize_confounds': True,
't_r': 2.5,
'target_affine': None,
'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.6s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-1.095605, ..., 16.449202],
...,
[ 2.59974 , ..., -2.179998]], dtype=float32),
array([[0., ..., 1.],
...,
[0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1)
__________________________________________________________run_glm - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.545625, ..., -1.041515]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.152042, ..., 1.145641]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.55236 , ..., 0.696758]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.684509, ..., 0.226524]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.423531, ..., -0.641954]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.726779, ..., 0.687642]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.809306, ..., 0.496974]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.116436, ..., -0.811166]), <nibabel.nifti1.Nifti1Image object at 0x7f881f5fff70>)
___________________________________________________________unmask - 0.1s, 0.0min
9.3.9.6. Generating a report¶
Since we have already computed the FirstLevelModel and have the contrast, we can quickly create a summary report.
from nilearn.image import mean_img
from nilearn.reporting import make_glm_report
mean_img_ = mean_img(func_filename)
report = make_glm_report(glm,
contrasts=conditions,
bg_img=mean_img_,
)
report # This report can be viewed in a notebook
Statistical Report for bottle, cat, chair, face, house, scissors, scrambledpix, shoe
First Level Model
Model details:
| drift_model | cosine |
|---|---|
| drift_order | 1 |
| fir_delays | [0] |
| high_pass (Hz) | 0.008 |
| hrf_model | glover |
| noise_model | ar1 |
| scaling_axis | 0 |
| signal_scaling | True |
| slice_time_ref | 0 |
| smoothing_fwhm | 4 |
| standardize | False |
| subject_label | None |
| t_r (s) | 2.5 |
| target_affine | None |
| target_shape | None |
Design Matrix:
Contrasts
Mask
Stat Maps with Cluster Tables
bottle
Contrast Plot
Cluster Table
| Height control | fpr |
|---|---|
| α | 0.001 |
| Threshold (computed) | 3.3 |
| Cluster size threshold (voxels) | 0 |
| Minimum distance (mm) | 8 |
| Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
|---|---|---|---|---|---|
| 1 | -36.75 | -46.88 | -46.88 | 6.61 | 147 |
| 2 | -54.25 | 13.12 | 5.62 | 6.47 | 98 |
| 3 | -1.75 | -39.38 | 13.12 | 6.45 | 196 |
| 4 | -57.75 | -39.38 | 9.38 | 6.17 | 246 |
| 5 | 33.25 | -43.12 | -43.12 | 6.11 | 1722 |
| 5a | 22.75 | -35.62 | -43.12 | 5.78 | |
| 5b | 15.75 | -46.88 | -39.38 | 4.33 | |
| 5c | 12.25 | -46.88 | -46.88 | 4.11 | |
| 6 | -40.25 | -35.62 | -35.62 | 6.07 | 393 |
| 7 | -19.25 | -24.38 | -43.12 | 5.99 | 492 |
| 7a | -19.25 | -31.88 | -39.38 | 5.47 | |
| 8 | 29.75 | -20.62 | -24.38 | 5.98 | 393 |
| 9 | -43.75 | 28.12 | -9.38 | 5.96 | 196 |
| 10 | 8.75 | -50.62 | -35.62 | 5.88 | 492 |
| 11 | 19.25 | -54.38 | -43.12 | 5.78 | 1476 |
| 11a | 12.25 | -58.12 | -28.12 | 5.44 | |
| 11b | 8.75 | -58.12 | -39.38 | 4.44 | |
| 12 | 40.25 | 16.88 | -20.62 | 5.73 | 49 |
| 13 | 22.75 | -46.88 | -61.88 | 5.70 | 492 |
| 13a | 22.75 | -58.12 | -61.88 | 5.38 | |
| 14 | 26.25 | -46.88 | -46.88 | 5.69 | 147 |
| 15 | -1.75 | -50.62 | -39.38 | 5.66 | 147 |
| 16 | -26.25 | -16.88 | -24.38 | 5.64 | 147 |
| 17 | 12.25 | -28.12 | -73.12 | 5.60 | 246 |
| 18 | -50.75 | 35.62 | -16.88 | 5.58 | 246 |
| 19 | -33.25 | -73.12 | 31.88 | 5.56 | 49 |
| 20 | -15.75 | -28.12 | -43.12 | 5.55 | 49 |
| 21 | 19.25 | -76.88 | -13.12 | 5.50 | 492 |
| 22 | -12.25 | -24.38 | -76.88 | 5.46 | 196 |
| 23 | -47.25 | -13.12 | 13.12 | 5.42 | 98 |
| 24 | 26.25 | -20.62 | -13.12 | 5.41 | 344 |
| 25 | -29.75 | 9.38 | -28.12 | 5.38 | 246 |
| 26 | 22.75 | -43.12 | 9.38 | 5.38 | 246 |
| 27 | -57.75 | -16.88 | 1.88 | 5.34 | 98 |
| 28 | -47.25 | -61.88 | -5.62 | 5.29 | 98 |
| 29 | -40.25 | -39.38 | 31.88 | 5.27 | 344 |
| 29a | -29.75 | -39.38 | 31.88 | 4.36 | |
| 30 | -19.25 | -50.62 | -39.38 | 5.26 | 147 |
| 31 | -12.25 | 5.62 | -16.88 | 5.25 | 49 |
| 32 | -29.75 | -43.12 | -50.62 | 5.24 | 393 |
| 33 | 8.75 | -91.88 | 5.62 | 5.24 | 49 |
| 34 | 1.75 | 50.62 | -16.88 | 5.19 | 344 |
| 35 | -50.75 | -50.62 | 20.62 | 5.17 | 147 |
| 36 | 43.75 | -50.62 | -5.62 | 5.17 | 935 |
| 36a | 47.25 | -43.12 | -1.88 | 4.41 | |
| 36b | 50.75 | -50.62 | -5.62 | 4.15 | |
| 37 | 26.25 | 9.38 | -16.88 | 5.16 | 196 |
| 38 | 5.25 | -76.88 | 24.38 | 5.15 | 49 |
| 39 | -29.75 | -84.38 | 1.88 | 5.14 | 49 |
| 40 | 26.25 | -69.38 | -16.88 | 5.14 | 246 |
| 41 | -54.25 | -31.88 | -13.12 | 5.14 | 49 |
| 42 | -47.25 | -9.38 | 5.62 | 5.10 | 295 |
| 43 | 33.25 | 5.62 | -13.12 | 5.10 | 246 |
| 44 | 12.25 | -84.38 | -28.12 | 5.07 | 98 |
| 45 | -29.75 | -80.62 | -24.38 | 5.05 | 49 |
| 46 | -40.25 | 24.38 | -9.38 | 5.04 | 49 |
| 47 | -54.25 | -46.88 | -5.62 | 5.02 | 98 |
| 48 | 26.25 | 31.88 | -31.88 | 5.02 | 147 |
| 49 | 5.25 | -61.88 | -20.62 | 5.02 | 295 |
| 50 | 12.25 | -13.12 | -28.12 | 5.02 | 98 |
| 51 | 29.75 | 1.88 | -9.38 | 5.01 | 98 |
| 52 | -47.25 | -39.38 | -20.62 | 5.01 | 885 |
| 52a | -50.75 | -39.38 | -9.38 | 4.50 | |
| 53 | -19.25 | -58.12 | -9.38 | 5.00 | 196 |
| 54 | 33.25 | 20.62 | -20.62 | 5.00 | 98 |
| 55 | -33.25 | 13.12 | 28.12 | 4.93 | 246 |
| 56 | -47.25 | -28.12 | 13.12 | 4.90 | 147 |
| 57 | 1.75 | -43.12 | -1.88 | 4.90 | 49 |
| 58 | -22.75 | -58.12 | -46.88 | 4.89 | 147 |
| 59 | -15.75 | -76.88 | 28.12 | 4.88 | 196 |
| 60 | 33.25 | 9.38 | -24.38 | 4.88 | 98 |
| 61 | -43.75 | 50.62 | 16.88 | 4.87 | 49 |
| 62 | -61.25 | -5.62 | 20.62 | 4.87 | 147 |
| 63 | -40.25 | -20.62 | -31.88 | 4.87 | 49 |
| 64 | -50.75 | 16.88 | -1.88 | 4.86 | 147 |
| 65 | -15.75 | -50.62 | -1.88 | 4.86 | 49 |
| 66 | 40.25 | -35.62 | -24.38 | 4.86 | 2067 |
| 66a | 43.75 | -28.12 | -9.38 | 4.70 | |
| 66b | 40.25 | -20.62 | -13.12 | 4.57 | |
| 66c | 47.25 | -35.62 | -20.62 | 4.13 | |
| 67 | 1.75 | -58.12 | -24.38 | 4.85 | 98 |
| 68 | 22.75 | -20.62 | -35.62 | 4.84 | 98 |
| 69 | 36.75 | 28.12 | -35.62 | 4.84 | 49 |
| 70 | -15.75 | 16.88 | 43.12 | 4.82 | 147 |
| 71 | 12.25 | -65.62 | -24.38 | 4.81 | 246 |
| 72 | -47.25 | -28.12 | 5.62 | 4.81 | 98 |
| 73 | 29.75 | -50.62 | -50.62 | 4.77 | 246 |
| 74 | 19.25 | -43.12 | -20.62 | 4.75 | 147 |
| 75 | 36.75 | -65.62 | -13.12 | 4.75 | 344 |
| 76 | -1.75 | -58.12 | -54.38 | 4.73 | 49 |
| 77 | 19.25 | 35.62 | 28.12 | 4.72 | 49 |
| 78 | -40.25 | -61.88 | -16.88 | 4.70 | 295 |
| 79 | -22.75 | 1.88 | -1.88 | 4.69 | 49 |
| 80 | 22.75 | -16.88 | -9.38 | 4.69 | 98 |
| 81 | 33.25 | 31.88 | -9.38 | 4.69 | 98 |
| 82 | -8.75 | -46.88 | -65.62 | 4.68 | 246 |
| 83 | 5.25 | -73.12 | 16.88 | 4.67 | 344 |
| 83a | -1.75 | -65.62 | 16.88 | 3.95 | |
| 84 | 22.75 | -20.62 | -28.12 | 4.67 | 295 |
| 84a | 12.25 | -20.62 | -31.88 | 4.46 | |
| 85 | -15.75 | -1.88 | -69.38 | 4.65 | 49 |
| 86 | -47.25 | 35.62 | 16.88 | 4.65 | 196 |
| 87 | 12.25 | 20.62 | 35.62 | 4.64 | 49 |
| 88 | -26.25 | -20.62 | -13.12 | 4.64 | 98 |
| 89 | -15.75 | -31.88 | -61.88 | 4.63 | 49 |
| 90 | -47.25 | -54.38 | -9.38 | 4.62 | 344 |
| 91 | 50.75 | 43.12 | -5.62 | 4.61 | 49 |
| 92 | -29.75 | 13.12 | -13.12 | 4.60 | 196 |
| 93 | 40.25 | 31.88 | 13.12 | 4.59 | 49 |
| 94 | 12.25 | -54.38 | -46.88 | 4.59 | 98 |
| 95 | -15.75 | -39.38 | -50.62 | 4.58 | 49 |
| 96 | -5.25 | -13.12 | -69.38 | 4.58 | 49 |
| 97 | -5.25 | -31.88 | 58.12 | 4.57 | 49 |
| 98 | -1.75 | 58.12 | 13.12 | 4.57 | 49 |
| 99 | -12.25 | -58.12 | -16.88 | 4.56 | 49 |
| 100 | -12.25 | -13.12 | -46.88 | 4.55 | 246 |
| 101 | -19.25 | -76.88 | -28.12 | 4.55 | 147 |
| 102 | 8.75 | -20.62 | -13.12 | 4.55 | 147 |
| 103 | 1.75 | -76.88 | 35.62 | 4.55 | 49 |
| 104 | -36.75 | -76.88 | 1.88 | 4.55 | 246 |
| 105 | -61.25 | -20.62 | 13.12 | 4.54 | 49 |
| 106 | -1.75 | -9.38 | -20.62 | 4.54 | 49 |
| 107 | 22.75 | -35.62 | 54.38 | 4.54 | 246 |
| 108 | -57.75 | -9.38 | 9.38 | 4.53 | 295 |
| 108a | -61.25 | -1.88 | 9.38 | 4.24 | |
| 109 | -47.25 | -28.12 | 43.12 | 4.52 | 49 |
| 110 | -47.25 | 16.88 | 5.62 | 4.52 | 98 |
| 111 | 8.75 | -16.88 | 46.88 | 4.52 | 49 |
| 112 | -12.25 | -58.12 | -46.88 | 4.52 | 49 |
| 113 | -36.75 | 43.12 | 24.38 | 4.51 | 98 |
| 114 | -22.75 | -76.88 | -16.88 | 4.51 | 49 |
| 115 | -29.75 | -58.12 | -9.38 | 4.51 | 49 |
| 116 | -47.25 | 20.62 | -13.12 | 4.50 | 49 |
| 117 | 1.75 | 13.12 | 9.38 | 4.50 | 49 |
| 118 | 15.75 | -1.88 | -16.88 | 4.50 | 196 |
| 119 | 33.25 | -9.38 | -58.12 | 4.50 | 98 |
| 120 | 50.75 | -5.62 | 5.62 | 4.49 | 49 |
| 121 | 33.25 | -50.62 | -20.62 | 4.49 | 246 |
| 122 | -50.75 | 9.38 | -16.88 | 4.48 | 196 |
| 123 | 40.25 | 35.62 | -1.88 | 4.48 | 49 |
| 124 | 50.75 | 1.88 | 43.12 | 4.48 | 98 |
| 125 | 8.75 | -50.62 | -20.62 | 4.48 | 49 |
| 126 | -1.75 | -46.88 | 1.88 | 4.46 | 98 |
| 127 | 15.75 | 9.38 | 43.12 | 4.46 | 98 |
| 128 | -40.25 | -65.62 | -5.62 | 4.45 | 49 |
| 129 | -40.25 | 9.38 | -28.12 | 4.45 | 147 |
| 130 | -15.75 | 9.38 | -20.62 | 4.45 | 98 |
| 131 | 12.25 | -9.38 | 13.12 | 4.45 | 49 |
| 132 | -26.25 | -54.38 | 46.88 | 4.43 | 98 |
| 133 | -15.75 | -76.88 | 20.62 | 4.43 | 49 |
| 134 | -50.75 | -16.88 | 24.38 | 4.42 | 49 |
| 135 | -50.75 | -5.62 | -5.62 | 4.42 | 49 |
| 136 | 26.25 | 28.12 | -20.62 | 4.42 | 98 |
| 137 | 40.25 | 5.62 | -24.38 | 4.42 | 49 |
| 138 | -50.75 | 9.38 | 9.38 | 4.41 | 49 |
| 139 | -50.75 | 16.88 | -13.12 | 4.41 | 147 |
| 140 | 57.75 | 35.62 | 28.12 | 4.40 | 98 |
| 141 | 33.25 | 24.38 | 39.38 | 4.38 | 49 |
| 142 | -15.75 | 24.38 | -9.38 | 4.38 | 49 |
| 143 | 22.75 | -61.88 | -46.88 | 4.38 | 147 |
| 144 | -40.25 | -46.88 | 1.88 | 4.38 | 147 |
| 145 | -12.25 | 54.38 | -9.38 | 4.37 | 98 |
| 146 | 5.25 | -88.12 | -1.88 | 4.37 | 49 |
| 147 | -15.75 | 13.12 | 50.62 | 4.36 | 98 |
| 148 | -36.75 | 28.12 | 31.88 | 4.36 | 246 |
| 149 | 19.25 | -1.88 | 28.12 | 4.35 | 49 |
| 150 | 1.75 | -5.62 | -13.12 | 4.35 | 49 |
| 151 | -47.25 | -24.38 | -16.88 | 4.35 | 98 |
| 152 | -26.25 | 13.12 | 46.88 | 4.35 | 49 |
| 153 | 5.25 | -35.62 | -58.12 | 4.35 | 98 |
| 154 | 36.75 | -73.12 | 5.62 | 4.34 | 98 |
| 155 | -33.25 | -9.38 | -13.12 | 4.34 | 344 |
| 156 | -15.75 | -9.38 | 28.12 | 4.34 | 295 |
| 157 | -19.25 | -54.38 | -61.88 | 4.33 | 196 |
| 158 | -8.75 | 5.62 | -24.38 | 4.33 | 49 |
| 159 | 68.25 | -13.12 | -9.38 | 4.32 | 246 |
| 159a | 68.25 | -1.88 | -9.38 | 4.29 | |
| 160 | 19.25 | -35.62 | 69.38 | 4.32 | 49 |
| 161 | -29.75 | -80.62 | -9.38 | 4.32 | 49 |
| 162 | 19.25 | -9.38 | 20.62 | 4.32 | 49 |
| 163 | -1.75 | -1.88 | 1.88 | 4.32 | 196 |
| 164 | 36.75 | -61.88 | -5.62 | 4.31 | 49 |
| 165 | -15.75 | -54.38 | 43.12 | 4.31 | 49 |
| 166 | -40.25 | -28.12 | -20.62 | 4.31 | 49 |
| 167 | 19.25 | -31.88 | 16.88 | 4.31 | 49 |
| 168 | 15.75 | -1.88 | -1.88 | 4.31 | 49 |
| 169 | -15.75 | -16.88 | 24.38 | 4.30 | 98 |
| 170 | -36.75 | 58.12 | 35.62 | 4.29 | 49 |
| 171 | 12.25 | -80.62 | 13.12 | 4.29 | 147 |
| 172 | -1.75 | -24.38 | 9.38 | 4.29 | 49 |
| 173 | -1.75 | -54.38 | -9.38 | 4.28 | 98 |
| 174 | -43.75 | 43.12 | -28.12 | 4.28 | 98 |
| 175 | 5.25 | -58.12 | -54.38 | 4.28 | 49 |
| 176 | 54.25 | -24.38 | -5.62 | 4.28 | 344 |
| 177 | -57.75 | -31.88 | -5.62 | 4.28 | 49 |
| 178 | 15.75 | 50.62 | 58.12 | 4.27 | 98 |
| 179 | 33.25 | -50.62 | -28.12 | 4.27 | 49 |
| 180 | -5.25 | 31.88 | -20.62 | 4.26 | 147 |
| 181 | 15.75 | -35.62 | 31.88 | 4.26 | 98 |
| 182 | -47.25 | -65.62 | 1.88 | 4.26 | 196 |
| 183 | -54.25 | -20.62 | -24.38 | 4.25 | 49 |
| 184 | 26.25 | -80.62 | -9.38 | 4.25 | 49 |
| 185 | 22.75 | 16.88 | 5.62 | 4.24 | 147 |
| 186 | 5.25 | -65.62 | -13.12 | 4.23 | 196 |
| 187 | -47.25 | 24.38 | 20.62 | 4.23 | 98 |
| 188 | -47.25 | -58.12 | 13.12 | 4.23 | 98 |
| 189 | 40.25 | 9.38 | -20.62 | 4.23 | 98 |
| 190 | 19.25 | 28.12 | 31.88 | 4.23 | 49 |
| 191 | 12.25 | 50.62 | -1.88 | 4.23 | 98 |
| 192 | 47.25 | -54.38 | -16.88 | 4.23 | 49 |
| 193 | 12.25 | 61.88 | 5.62 | 4.22 | 49 |
| 194 | 19.25 | -9.38 | 5.62 | 4.22 | 49 |
| 195 | -57.75 | -31.88 | 24.38 | 4.22 | 98 |
| 196 | -19.25 | -20.62 | -35.62 | 4.21 | 98 |
| 197 | 19.25 | -84.38 | -20.62 | 4.21 | 49 |
| 198 | 12.25 | 43.12 | -16.88 | 4.21 | 49 |
| 199 | -1.75 | -9.38 | -46.88 | 4.21 | 49 |
| 200 | 15.75 | -24.38 | -35.62 | 4.21 | 246 |
| 201 | -5.25 | -24.38 | -20.62 | 4.20 | 147 |
| 202 | -1.75 | -50.62 | -1.88 | 4.20 | 49 |
| 203 | 15.75 | -73.12 | -31.88 | 4.20 | 49 |
| 204 | -47.25 | -28.12 | 28.12 | 4.20 | 49 |
| 205 | 36.75 | -31.88 | -9.38 | 4.20 | 246 |
| 206 | 12.25 | 5.62 | 43.12 | 4.19 | 49 |
| 207 | -1.75 | 76.88 | 5.62 | 4.19 | 49 |
| 208 | 5.25 | -80.62 | -1.88 | 4.19 | 49 |
| 209 | -29.75 | 20.62 | -24.38 | 4.18 | 49 |
| 210 | -57.75 | 5.62 | 13.12 | 4.18 | 98 |
| 211 | 47.25 | -54.38 | -1.88 | 4.18 | 49 |
| 212 | 1.75 | -5.62 | -54.38 | 4.18 | 49 |
| 213 | 40.25 | -58.12 | 5.62 | 4.17 | 98 |
| 214 | 26.25 | 5.62 | 16.88 | 4.17 | 246 |
| 215 | -8.75 | 9.38 | 24.38 | 4.17 | 196 |
| 216 | 19.25 | -5.62 | 43.12 | 4.17 | 98 |
| 217 | -22.75 | -69.38 | -13.12 | 4.16 | 196 |
| 218 | -1.75 | -58.12 | -28.12 | 4.16 | 98 |
| 219 | 19.25 | 65.62 | 9.38 | 4.16 | 98 |
| 220 | -61.25 | -16.88 | 9.38 | 4.16 | 49 |
| 221 | 36.75 | 43.12 | -28.12 | 4.15 | 49 |
| 222 | -1.75 | -39.38 | 1.88 | 4.15 | 98 |
| 223 | 12.25 | 1.88 | 28.12 | 4.15 | 147 |
| 224 | 29.75 | -28.12 | -24.38 | 4.15 | 49 |
| 225 | 19.25 | 16.88 | 28.12 | 4.15 | 49 |
| 226 | 40.25 | -35.62 | -43.12 | 4.15 | 49 |
| 227 | -22.75 | -50.62 | 54.38 | 4.15 | 49 |
| 228 | -22.75 | 16.88 | 5.62 | 4.15 | 49 |
| 229 | -36.75 | 20.62 | 35.62 | 4.14 | 246 |
| 230 | -26.25 | -73.12 | -35.62 | 4.14 | 98 |
| 231 | -43.75 | 24.38 | -1.88 | 4.14 | 98 |
| 232 | 8.75 | 20.62 | -24.38 | 4.13 | 147 |
| 233 | 26.25 | -5.62 | -1.88 | 4.12 | 49 |
| 234 | -54.25 | 1.88 | 13.12 | 4.12 | 49 |
| 235 | -33.25 | -31.88 | -65.62 | 4.12 | 98 |
| 236 | -15.75 | -20.62 | -58.12 | 4.12 | 49 |
| 237 | -8.75 | -46.88 | -31.88 | 4.12 | 49 |
| 238 | -1.75 | -50.62 | -24.38 | 4.12 | 147 |
| 239 | -12.25 | 54.38 | 54.38 | 4.11 | 98 |
| 240 | -47.25 | 46.88 | 20.62 | 4.11 | 49 |
| 241 | -15.75 | -1.88 | 16.88 | 4.10 | 49 |
| 242 | -29.75 | 24.38 | 13.12 | 4.10 | 98 |
| 243 | -57.75 | -46.88 | -1.88 | 4.10 | 246 |
| 244 | -50.75 | -20.62 | 9.38 | 4.10 | 98 |
| 245 | 19.25 | -13.12 | 28.12 | 4.10 | 49 |
| 246 | 22.75 | 46.88 | -16.88 | 4.10 | 49 |
| 247 | 19.25 | -39.38 | -13.12 | 4.09 | 49 |
| 248 | -19.25 | 65.62 | 39.38 | 4.09 | 49 |
| 249 | -1.75 | -9.38 | -5.62 | 4.09 | 49 |
| 250 | -1.75 | 1.88 | 13.12 | 4.08 | 49 |
| 251 | -8.75 | -39.38 | -31.88 | 4.08 | 49 |
| 252 | -40.25 | -16.88 | -50.62 | 4.08 | 49 |
| 253 | -43.75 | -39.38 | -16.88 | 4.07 | 147 |
| 254 | 19.25 | 13.12 | -1.88 | 4.07 | 98 |
| 255 | 22.75 | 5.62 | -1.88 | 4.07 | 49 |
| 256 | -8.75 | -39.38 | -39.38 | 4.06 | 442 |
| 256a | -12.25 | -46.88 | -43.12 | 3.77 | |
| 257 | -19.25 | 61.88 | 5.62 | 4.06 | 49 |
| 258 | 54.25 | -20.62 | 39.38 | 4.06 | 49 |
| 259 | 54.25 | -9.38 | 20.62 | 4.06 | 147 |
| 260 | 22.75 | -69.38 | 1.88 | 4.06 | 147 |
| 261 | -50.75 | 39.38 | 9.38 | 4.05 | 49 |
| 262 | -19.25 | -5.62 | -24.38 | 4.04 | 393 |
| 263 | 33.25 | 5.62 | 28.12 | 4.03 | 49 |
| 264 | -36.75 | 43.12 | 1.88 | 4.02 | 147 |
| 265 | 19.25 | -69.38 | -13.12 | 4.02 | 49 |
| 266 | 12.25 | -9.38 | 5.62 | 4.02 | 49 |
| 267 | 12.25 | -88.12 | 5.62 | 4.02 | 98 |
| 268 | -26.25 | -76.88 | 35.62 | 4.02 | 49 |
| 269 | -47.25 | -43.12 | 9.38 | 4.02 | 147 |
| 270 | 33.25 | -24.38 | -13.12 | 4.01 | 49 |
| 271 | 40.25 | -43.12 | -28.12 | 4.01 | 49 |
| 272 | 29.75 | -24.38 | -16.88 | 4.01 | 49 |
| 273 | -40.25 | 16.88 | 24.38 | 4.00 | 98 |
| 274 | 26.25 | -20.62 | -65.62 | 4.00 | 98 |
| 275 | -47.25 | -39.38 | 16.88 | 4.00 | 49 |
| 276 | -43.75 | 20.62 | 20.62 | 4.00 | 49 |
| 277 | -15.75 | -73.12 | -13.12 | 4.00 | 49 |
| 278 | -1.75 | 13.12 | -20.62 | 3.99 | 98 |
| 279 | 57.75 | -39.38 | 5.62 | 3.99 | 49 |
| 280 | -29.75 | -65.62 | -20.62 | 3.99 | 49 |
| 281 | -19.25 | -50.62 | 16.88 | 3.99 | 49 |
| 282 | 5.25 | -61.88 | -46.88 | 3.98 | 49 |
| 283 | 22.75 | 31.88 | 9.38 | 3.98 | 49 |
| 284 | -19.25 | -65.62 | -20.62 | 3.98 | 49 |
| 285 | 15.75 | -16.88 | -58.12 | 3.98 | 49 |
| 286 | 19.25 | -13.12 | -28.12 | 3.98 | 98 |
| 287 | -47.25 | -13.12 | -54.38 | 3.97 | 98 |
| 288 | 1.75 | -1.88 | 31.88 | 3.97 | 98 |
| 289 | 36.75 | -39.38 | -69.38 | 3.97 | 49 |
| 290 | -1.75 | -35.62 | -61.88 | 3.96 | 98 |
| 291 | -8.75 | 39.38 | 5.62 | 3.96 | 49 |
| 292 | 26.25 | 20.62 | -24.38 | 3.96 | 98 |
| 293 | -5.25 | -84.38 | -20.62 | 3.96 | 49 |
| 294 | 8.75 | 76.88 | 35.62 | 3.95 | 147 |
| 295 | -22.75 | 31.88 | -24.38 | 3.95 | 49 |
| 296 | -26.25 | 46.88 | 5.62 | 3.95 | 147 |
| 297 | -22.75 | -9.38 | 13.12 | 3.95 | 49 |
| 298 | -33.25 | 13.12 | 13.12 | 3.94 | 98 |
| 299 | 15.75 | 88.12 | 9.38 | 3.94 | 98 |
| 300 | 5.25 | -43.12 | -9.38 | 3.94 | 49 |
| 301 | -47.25 | -13.12 | 35.62 | 3.93 | 49 |
| 302 | -8.75 | -54.38 | -31.88 | 3.93 | 49 |
| 303 | 12.25 | -13.12 | 31.88 | 3.92 | 98 |
| 304 | -54.25 | -28.12 | -16.88 | 3.92 | 49 |
| 305 | -12.25 | -20.62 | -61.88 | 3.92 | 49 |
| 306 | 50.75 | -54.38 | -9.38 | 3.92 | 49 |
| 307 | 68.25 | -31.88 | 9.38 | 3.91 | 196 |
| 308 | 12.25 | -1.88 | -69.38 | 3.91 | 98 |
| 309 | 19.25 | 16.88 | 16.88 | 3.91 | 147 |
| 310 | -33.25 | -16.88 | -5.62 | 3.91 | 49 |
| 311 | 5.25 | -28.12 | -9.38 | 3.91 | 49 |
| 312 | -5.25 | 46.88 | 54.38 | 3.90 | 98 |
| 313 | -43.75 | 16.88 | 58.12 | 3.90 | 49 |
| 314 | -33.25 | 1.88 | -16.88 | 3.90 | 147 |
| 315 | 5.25 | -65.62 | 54.38 | 3.90 | 147 |
| 316 | -68.25 | -24.38 | 1.88 | 3.90 | 147 |
| 317 | -64.75 | -13.12 | -24.38 | 3.90 | 49 |
| 318 | 29.75 | -43.12 | -58.12 | 3.90 | 49 |
| 319 | 1.75 | -43.12 | -16.88 | 3.90 | 295 |
| 319a | 12.25 | -39.38 | -13.12 | 3.81 | |
| 320 | -47.25 | -58.12 | -28.12 | 3.90 | 49 |
| 321 | 33.25 | 5.62 | 35.62 | 3.89 | 98 |
| 322 | 50.75 | -13.12 | 5.62 | 3.89 | 49 |
| 323 | 19.25 | -24.38 | 16.88 | 3.89 | 49 |
| 324 | -33.25 | -69.38 | 39.38 | 3.89 | 49 |
| 325 | 15.75 | -73.12 | -20.62 | 3.89 | 49 |
| 326 | 64.75 | -43.12 | 5.62 | 3.89 | 49 |
| 327 | -36.75 | -31.88 | -46.88 | 3.88 | 49 |
| 328 | -15.75 | -73.12 | 39.38 | 3.88 | 98 |
| 329 | -43.75 | 50.62 | 28.12 | 3.87 | 49 |
| 330 | 19.25 | -84.38 | 24.38 | 3.87 | 49 |
| 331 | -5.25 | -46.88 | -16.88 | 3.87 | 147 |
| 332 | -8.75 | -65.62 | -43.12 | 3.87 | 49 |
| 333 | 1.75 | -58.12 | 9.38 | 3.87 | 49 |
| 334 | -47.25 | 1.88 | -28.12 | 3.87 | 49 |
| 335 | 29.75 | -50.62 | 54.38 | 3.87 | 147 |
| 336 | 8.75 | 46.88 | -5.62 | 3.87 | 49 |
| 337 | 26.25 | -80.62 | 1.88 | 3.87 | 49 |
| 338 | -33.25 | 35.62 | -24.38 | 3.86 | 98 |
| 339 | -19.25 | -13.12 | 61.88 | 3.86 | 49 |
| 340 | 12.25 | -35.62 | 73.12 | 3.86 | 98 |
| 341 | 43.75 | 31.88 | 5.62 | 3.86 | 49 |
| 342 | -57.75 | 1.88 | -13.12 | 3.86 | 98 |
| 343 | 8.75 | 13.12 | 50.62 | 3.85 | 98 |
| 344 | -26.25 | 5.62 | -13.12 | 3.85 | 49 |
| 345 | 8.75 | -24.38 | 9.38 | 3.85 | 49 |
| 346 | -12.25 | -20.62 | -46.88 | 3.85 | 49 |
| 347 | -26.25 | 1.88 | 43.12 | 3.85 | 98 |
| 348 | 12.25 | 24.38 | 61.88 | 3.85 | 49 |
| 349 | -47.25 | -61.88 | 20.62 | 3.85 | 49 |
| 350 | 19.25 | -58.12 | -13.12 | 3.85 | 49 |
| 351 | -22.75 | -5.62 | -1.88 | 3.85 | 49 |
| 352 | 26.25 | -61.88 | 31.88 | 3.85 | 49 |
| 353 | -29.75 | 35.62 | -9.38 | 3.85 | 49 |
| 354 | 47.25 | 13.12 | -20.62 | 3.85 | 49 |
| 355 | 1.75 | -9.38 | -50.62 | 3.85 | 49 |
| 356 | -15.75 | -50.62 | -31.88 | 3.84 | 196 |
| 357 | 15.75 | -46.88 | 20.62 | 3.84 | 49 |
| 358 | -12.25 | -31.88 | -50.62 | 3.84 | 196 |
| 359 | 50.75 | 50.62 | -1.88 | 3.84 | 49 |
| 360 | 61.25 | 1.88 | 24.38 | 3.83 | 49 |
| 361 | 1.75 | -31.88 | 1.88 | 3.82 | 49 |
| 362 | 36.75 | -54.38 | -20.62 | 3.82 | 49 |
| 363 | 26.25 | -16.88 | -58.12 | 3.82 | 49 |
| 364 | -15.75 | -46.88 | -5.62 | 3.81 | 49 |
| 365 | 47.25 | 20.62 | 5.62 | 3.81 | 49 |
| 366 | 22.75 | -28.12 | 69.38 | 3.81 | 98 |
| 367 | 40.25 | -20.62 | 20.62 | 3.81 | 49 |
| 368 | -43.75 | -65.62 | 24.38 | 3.81 | 49 |
| 369 | -19.25 | -61.88 | 20.62 | 3.81 | 49 |
| 370 | 15.75 | 16.88 | -16.88 | 3.80 | 49 |
| 371 | 29.75 | -31.88 | 39.38 | 3.80 | 147 |
| 372 | -12.25 | 46.88 | 28.12 | 3.80 | 49 |
| 373 | 12.25 | 69.38 | 5.62 | 3.80 | 49 |
| 374 | 15.75 | -20.62 | -20.62 | 3.80 | 49 |
| 375 | 29.75 | -58.12 | -46.88 | 3.79 | 49 |
| 376 | 22.75 | -24.38 | 1.88 | 3.79 | 49 |
| 377 | -29.75 | -20.62 | -69.38 | 3.79 | 49 |
| 378 | -47.25 | -1.88 | -20.62 | 3.79 | 49 |
| 379 | 43.75 | -69.38 | -1.88 | 3.79 | 49 |
| 380 | 5.25 | -28.12 | 73.12 | 3.79 | 49 |
| 381 | 19.25 | 35.62 | 1.88 | 3.78 | 98 |
| 382 | 47.25 | 13.12 | 5.62 | 3.78 | 98 |
| 383 | -15.75 | -5.62 | 61.88 | 3.78 | 98 |
| 384 | -8.75 | 84.38 | 20.62 | 3.77 | 147 |
| 385 | 26.25 | 24.38 | 13.12 | 3.77 | 98 |
| 386 | 19.25 | -9.38 | -5.62 | 3.77 | 49 |
| 387 | 15.75 | -16.88 | 5.62 | 3.77 | 49 |
| 388 | -1.75 | -28.12 | 58.12 | 3.76 | 49 |
| 389 | -29.75 | -1.88 | -1.88 | 3.75 | 49 |
| 390 | 26.25 | 1.88 | 13.12 | 3.75 | 49 |
| 391 | -40.25 | 35.62 | 31.88 | 3.74 | 49 |
| 392 | 36.75 | 50.62 | 1.88 | 3.74 | 98 |
| 393 | -1.75 | 80.62 | 1.88 | 3.74 | 49 |
| 394 | -57.75 | -9.38 | 16.88 | 3.74 | 147 |
| 395 | 40.25 | -9.38 | -31.88 | 3.74 | 49 |
| 396 | 1.75 | 24.38 | 31.88 | 3.73 | 49 |
| 397 | 33.25 | 43.12 | 35.62 | 3.73 | 49 |
| 398 | -15.75 | 20.62 | -43.12 | 3.73 | 98 |
| 399 | 43.75 | 9.38 | -39.38 | 3.73 | 49 |
| 400 | 26.25 | 13.12 | 9.38 | 3.73 | 49 |
| 401 | 33.25 | -9.38 | -9.38 | 3.73 | 49 |
| 402 | 40.25 | -28.12 | -1.88 | 3.73 | 49 |
| 403 | 29.75 | -16.88 | -61.88 | 3.73 | 49 |
| 404 | 22.75 | -76.88 | -35.62 | 3.73 | 98 |
| 405 | -8.75 | -46.88 | -24.38 | 3.73 | 49 |
| 406 | 1.75 | -20.62 | -35.62 | 3.73 | 49 |
| 407 | 19.25 | 54.38 | 1.88 | 3.73 | 49 |
| 408 | -26.25 | -31.88 | 16.88 | 3.72 | 49 |
| 409 | 47.25 | 31.88 | -24.38 | 3.72 | 49 |
| 410 | -54.25 | 13.12 | 20.62 | 3.72 | 147 |
| 411 | -33.25 | -43.12 | -61.88 | 3.72 | 49 |
| 412 | 19.25 | -16.88 | 16.88 | 3.72 | 49 |
| 413 | -19.25 | -84.38 | 1.88 | 3.72 | 49 |
| 414 | 47.25 | 16.88 | -39.38 | 3.72 | 49 |
| 415 | 40.25 | -31.88 | 54.38 | 3.71 | 98 |
| 416 | 61.25 | -31.88 | 39.38 | 3.71 | 49 |
| 417 | -54.25 | -24.38 | -39.38 | 3.71 | 49 |
| 418 | 26.25 | -20.62 | 65.62 | 3.71 | 49 |
| 419 | 36.75 | -73.12 | -9.38 | 3.71 | 49 |
| 420 | 29.75 | -1.88 | -20.62 | 3.71 | 49 |
| 421 | -12.25 | -9.38 | -24.38 | 3.71 | 49 |
| 422 | 15.75 | -31.88 | -50.62 | 3.71 | 49 |
| 423 | -15.75 | 5.62 | 65.62 | 3.71 | 49 |
| 424 | 1.75 | 9.38 | -16.88 | 3.70 | 49 |
| 425 | -22.75 | -20.62 | -31.88 | 3.70 | 49 |
| 426 | 8.75 | -73.12 | 35.62 | 3.70 | 49 |
| 427 | 36.75 | -54.38 | -28.12 | 3.70 | 49 |
| 428 | 43.75 | -39.38 | -1.88 | 3.70 | 49 |
| 429 | -33.25 | -35.62 | -9.38 | 3.70 | 49 |
| 430 | -50.75 | 28.12 | 46.88 | 3.69 | 49 |
| 431 | -15.75 | -43.12 | 1.88 | 3.69 | 49 |
| 432 | -1.75 | -43.12 | -31.88 | 3.69 | 98 |
| 433 | 50.75 | -16.88 | 28.12 | 3.68 | 49 |
| 434 | 43.75 | -5.62 | -13.12 | 3.68 | 49 |
| 435 | 57.75 | -20.62 | 28.12 | 3.68 | 49 |
| 436 | -47.25 | 46.88 | 28.12 | 3.68 | 49 |
| 437 | 15.75 | -20.62 | 73.12 | 3.68 | 49 |
| 438 | 1.75 | 65.62 | -16.88 | 3.68 | 98 |
| 439 | -22.75 | 13.12 | -24.38 | 3.67 | 49 |
| 440 | -33.25 | 16.88 | 50.62 | 3.67 | 98 |
| 441 | -15.75 | -43.12 | -43.12 | 3.67 | 98 |
| 442 | -1.75 | 20.62 | -16.88 | 3.67 | 98 |
| 443 | -26.25 | -28.12 | -31.88 | 3.67 | 49 |
| 444 | -15.75 | -69.38 | 28.12 | 3.66 | 49 |
| 445 | -47.25 | 9.38 | -9.38 | 3.66 | 49 |
| 446 | -15.75 | -1.88 | -31.88 | 3.66 | 49 |
| 447 | -29.75 | -1.88 | -24.38 | 3.66 | 98 |
| 448 | 26.25 | 1.88 | -13.12 | 3.66 | 49 |
| 449 | 33.25 | -24.38 | -58.12 | 3.66 | 49 |
| 450 | -40.25 | -58.12 | 9.38 | 3.66 | 98 |
| 451 | 1.75 | 20.62 | -39.38 | 3.65 | 98 |
| 452 | 47.25 | 16.88 | 39.38 | 3.65 | 49 |
| 453 | -26.25 | -35.62 | 54.38 | 3.65 | 49 |
| 454 | 22.75 | -16.88 | 43.12 | 3.65 | 49 |
| 455 | 12.25 | 24.38 | -39.38 | 3.65 | 49 |
| 456 | -1.75 | -16.88 | -28.12 | 3.64 | 49 |
| 457 | 33.25 | -39.38 | -58.12 | 3.64 | 49 |
| 458 | 26.25 | -20.62 | 20.62 | 3.64 | 49 |
| 459 | -8.75 | -61.88 | -46.88 | 3.64 | 49 |
| 460 | 19.25 | 5.62 | -13.12 | 3.64 | 49 |
| 461 | 26.25 | -9.38 | 13.12 | 3.63 | 98 |
| 462 | 33.25 | 43.12 | 24.38 | 3.63 | 49 |
| 463 | 19.25 | -9.38 | 35.62 | 3.63 | 49 |
| 464 | -54.25 | -20.62 | -9.38 | 3.63 | 49 |
| 465 | -5.25 | -39.38 | 5.62 | 3.63 | 49 |
| 466 | 22.75 | -54.38 | 61.88 | 3.62 | 49 |
| 467 | -22.75 | -80.62 | 1.88 | 3.62 | 49 |
| 468 | 40.25 | -35.62 | 50.62 | 3.62 | 49 |
| 469 | 22.75 | -1.88 | 5.62 | 3.62 | 49 |
| 470 | 43.75 | -69.38 | 9.38 | 3.61 | 98 |
| 471 | 33.25 | -58.12 | -16.88 | 3.61 | 49 |
| 472 | 19.25 | -31.88 | -16.88 | 3.61 | 49 |
| 473 | 1.75 | 65.62 | -9.38 | 3.61 | 49 |
| 474 | -12.25 | 88.12 | 16.88 | 3.61 | 49 |
| 475 | -47.25 | 61.88 | 1.88 | 3.61 | 49 |
| 476 | -26.25 | 13.12 | 13.12 | 3.61 | 49 |
| 477 | -33.25 | -1.88 | 13.12 | 3.61 | 49 |
| 478 | 40.25 | 28.12 | -39.38 | 3.61 | 49 |
| 479 | 43.75 | 24.38 | -5.62 | 3.61 | 49 |
| 480 | -50.75 | -58.12 | 1.88 | 3.61 | 49 |
| 481 | 26.25 | -76.88 | -16.88 | 3.60 | 49 |
| 482 | -1.75 | -9.38 | -28.12 | 3.60 | 49 |
| 483 | -5.25 | -54.38 | -54.38 | 3.60 | 49 |
| 484 | -47.25 | -9.38 | 43.12 | 3.60 | 49 |
| 485 | 19.25 | -35.62 | -20.62 | 3.59 | 147 |
| 486 | -22.75 | 43.12 | -28.12 | 3.59 | 49 |
| 487 | -36.75 | -16.88 | -46.88 | 3.59 | 49 |
| 488 | 47.25 | 39.38 | 13.12 | 3.58 | 98 |
| 489 | 8.75 | -65.62 | 20.62 | 3.58 | 49 |
| 490 | 29.75 | 16.88 | 35.62 | 3.58 | 49 |
| 491 | 22.75 | 46.88 | 13.12 | 3.58 | 49 |
| 492 | -29.75 | -80.62 | 20.62 | 3.58 | 49 |
| 493 | 68.25 | -28.12 | 16.88 | 3.57 | 49 |
| 494 | -19.25 | 43.12 | -1.88 | 3.57 | 49 |
| 495 | 19.25 | -24.38 | -39.38 | 3.57 | 49 |
| 496 | -8.75 | -9.38 | -20.62 | 3.57 | 49 |
| 497 | 26.25 | -80.62 | -28.12 | 3.57 | 49 |
| 498 | 15.75 | 20.62 | 43.12 | 3.56 | 49 |
| 499 | 19.25 | -46.88 | 31.88 | 3.56 | 49 |
| 500 | 22.75 | 73.12 | 5.62 | 3.56 | 49 |
| 501 | 50.75 | -43.12 | 9.38 | 3.56 | 49 |
| 502 | 26.25 | -58.12 | -13.12 | 3.56 | 49 |
| 503 | -57.75 | -24.38 | 5.62 | 3.56 | 49 |
| 504 | -1.75 | -9.38 | 31.88 | 3.56 | 49 |
| 505 | -15.75 | -50.62 | 39.38 | 3.56 | 49 |
| 506 | -57.75 | 39.38 | 16.88 | 3.56 | 98 |
| 507 | 12.25 | -9.38 | 50.62 | 3.56 | 49 |
| 508 | -12.25 | -13.12 | -73.12 | 3.55 | 98 |
| 509 | -26.25 | -61.88 | 31.88 | 3.55 | 49 |
| 510 | -33.25 | 39.38 | 54.38 | 3.55 | 49 |
| 511 | 54.25 | 1.88 | 35.62 | 3.55 | 49 |
| 512 | 29.75 | -31.88 | -31.88 | 3.55 | 49 |
| 513 | -33.25 | 65.62 | 20.62 | 3.55 | 49 |
| 514 | -54.25 | -9.38 | -5.62 | 3.54 | 98 |
| 515 | 36.75 | 50.62 | -16.88 | 3.54 | 49 |
| 516 | 15.75 | 28.12 | -39.38 | 3.54 | 49 |
| 517 | 36.75 | -24.38 | -31.88 | 3.54 | 49 |
| 518 | -36.75 | 61.88 | 9.38 | 3.54 | 49 |
| 519 | 1.75 | -1.88 | -20.62 | 3.53 | 49 |
| 520 | 12.25 | -65.62 | 1.88 | 3.53 | 49 |
| 521 | 29.75 | 65.62 | 43.12 | 3.53 | 49 |
| 522 | 47.25 | -35.62 | 16.88 | 3.53 | 49 |
| 523 | -40.25 | -50.62 | 28.12 | 3.53 | 49 |
| 524 | 33.25 | -28.12 | 65.62 | 3.53 | 49 |
| 525 | 5.25 | 5.62 | -69.38 | 3.53 | 49 |
| 526 | -1.75 | -1.88 | -5.62 | 3.52 | 49 |
| 527 | -1.75 | -46.88 | -65.62 | 3.52 | 49 |
| 528 | 12.25 | -54.38 | -54.38 | 3.52 | 49 |
| 529 | -5.25 | 43.12 | -16.88 | 3.52 | 49 |
| 530 | 12.25 | -9.38 | -24.38 | 3.52 | 49 |
| 531 | -50.75 | -1.88 | 16.88 | 3.52 | 49 |
| 532 | -29.75 | 35.62 | -1.88 | 3.52 | 49 |
| 533 | 12.25 | -35.62 | 9.38 | 3.52 | 49 |
| 534 | 36.75 | 35.62 | 16.88 | 3.52 | 147 |
| 535 | -15.75 | -69.38 | -43.12 | 3.52 | 49 |
| 536 | -33.25 | -58.12 | -1.88 | 3.52 | 49 |
| 537 | -40.25 | -69.38 | 31.88 | 3.52 | 49 |
| 538 | -54.25 | -13.12 | 13.12 | 3.51 | 98 |
| 539 | 8.75 | 28.12 | -24.38 | 3.51 | 49 |
| 540 | -36.75 | -13.12 | 9.38 | 3.50 | 49 |
| 541 | -54.25 | -20.62 | -50.62 | 3.50 | 49 |
| 542 | 36.75 | 20.62 | 31.88 | 3.50 | 49 |
| 543 | 26.25 | -65.62 | 46.88 | 3.50 | 49 |
| 544 | 8.75 | -76.88 | 9.38 | 3.50 | 49 |
| 545 | -47.25 | -24.38 | -5.62 | 3.49 | 49 |
| 546 | -5.25 | -61.88 | 20.62 | 3.49 | 49 |
| 547 | 15.75 | 76.88 | 35.62 | 3.49 | 49 |
| 548 | -50.75 | -16.88 | -13.12 | 3.49 | 98 |
| 549 | 5.25 | -73.12 | -16.88 | 3.49 | 49 |
| 550 | 15.75 | 28.12 | -5.62 | 3.49 | 49 |
| 551 | 19.25 | -28.12 | -24.38 | 3.49 | 49 |
| 552 | 19.25 | -50.62 | -73.12 | 3.49 | 49 |
| 553 | 19.25 | 20.62 | 20.62 | 3.49 | 49 |
| 554 | -36.75 | 35.62 | -13.12 | 3.49 | 49 |
| 555 | 1.75 | -16.88 | -24.38 | 3.49 | 49 |
| 556 | 22.75 | 5.62 | 5.62 | 3.49 | 98 |
| 557 | 12.25 | -84.38 | -5.62 | 3.48 | 49 |
| 558 | 33.25 | -35.62 | -5.62 | 3.48 | 49 |
| 559 | 50.75 | 39.38 | -9.38 | 3.48 | 49 |
| 560 | 22.75 | -5.62 | 20.62 | 3.48 | 49 |
| 561 | -50.75 | 46.88 | 9.38 | 3.48 | 98 |
| 562 | 54.25 | 1.88 | -31.88 | 3.48 | 49 |
| 563 | 40.25 | -31.88 | -58.12 | 3.48 | 49 |
| 564 | 40.25 | -76.88 | -9.38 | 3.47 | 49 |
| 565 | -36.75 | -31.88 | 20.62 | 3.47 | 49 |
| 566 | 36.75 | 1.88 | 20.62 | 3.47 | 49 |
| 567 | 40.25 | -9.38 | 1.88 | 3.47 | 49 |
| 568 | 22.75 | 13.12 | 35.62 | 3.47 | 98 |
| 569 | 33.25 | 5.62 | 50.62 | 3.47 | 49 |
| 570 | -50.75 | 5.62 | -9.38 | 3.47 | 49 |
| 571 | 40.25 | -35.62 | -1.88 | 3.47 | 49 |
| 572 | -50.75 | -9.38 | -13.12 | 3.46 | 49 |
| 573 | -29.75 | 24.38 | 5.62 | 3.46 | 49 |
| 574 | -26.25 | -35.62 | -9.38 | 3.46 | 49 |
| 575 | -15.75 | -16.88 | -28.12 | 3.46 | 98 |
| 576 | -47.25 | -50.62 | 5.62 | 3.46 | 49 |
| 577 | 19.25 | -5.62 | 13.12 | 3.45 | 49 |
| 578 | 22.75 | -9.38 | -50.62 | 3.45 | 49 |
| 579 | -5.25 | 9.38 | 9.38 | 3.45 | 98 |
| 580 | -33.25 | 1.88 | 31.88 | 3.45 | 49 |
| 581 | -19.25 | -50.62 | -46.88 | 3.45 | 49 |
| 582 | -1.75 | -16.88 | -58.12 | 3.45 | 49 |
| 583 | 36.75 | 24.38 | -13.12 | 3.45 | 49 |
| 584 | -1.75 | -35.62 | -13.12 | 3.45 | 49 |
| 585 | -15.75 | 9.38 | 35.62 | 3.45 | 147 |
| 586 | -43.75 | -35.62 | -9.38 | 3.45 | 49 |
| 587 | 22.75 | -9.38 | 43.12 | 3.45 | 49 |
| 588 | 33.25 | 50.62 | 24.38 | 3.45 | 49 |
| 589 | 1.75 | -65.62 | -43.12 | 3.45 | 49 |
| 590 | -29.75 | 16.88 | -5.62 | 3.44 | 49 |
| 591 | 43.75 | -31.88 | -39.38 | 3.44 | 49 |
| 592 | 26.25 | 9.38 | 24.38 | 3.44 | 49 |
| 593 | -54.25 | 24.38 | 24.38 | 3.44 | 49 |
| 594 | 43.75 | 1.88 | -1.88 | 3.44 | 49 |
| 595 | 29.75 | -16.88 | 58.12 | 3.44 | 49 |
| 596 | 54.25 | -16.88 | 1.88 | 3.44 | 98 |
| 597 | -36.75 | -69.38 | 13.12 | 3.44 | 49 |
| 598 | -5.25 | -43.12 | 69.38 | 3.44 | 49 |
| 599 | 15.75 | -50.62 | 9.38 | 3.43 | 49 |
| 600 | -36.75 | -69.38 | 5.62 | 3.43 | 49 |
| 601 | -26.25 | -31.88 | -58.12 | 3.43 | 49 |
| 602 | 15.75 | 1.88 | 35.62 | 3.43 | 49 |
| 603 | -29.75 | -43.12 | 58.12 | 3.43 | 49 |
| 604 | -1.75 | 43.12 | -20.62 | 3.43 | 49 |
| 605 | -19.25 | -65.62 | 9.38 | 3.43 | 49 |
| 606 | 12.25 | -35.62 | -61.88 | 3.43 | 49 |
| 607 | -33.25 | -9.38 | -46.88 | 3.43 | 49 |
| 608 | -1.75 | -16.88 | 24.38 | 3.43 | 49 |
| 609 | -54.25 | -16.88 | -5.62 | 3.43 | 49 |
| 610 | 47.25 | 28.12 | -39.38 | 3.43 | 49 |
| 611 | -36.75 | 16.88 | 1.88 | 3.43 | 49 |
| 612 | 47.25 | -9.38 | 5.62 | 3.42 | 49 |
| 613 | -19.25 | 1.88 | 58.12 | 3.42 | 49 |
| 614 | -26.25 | -24.38 | -5.62 | 3.42 | 49 |
| 615 | 36.75 | -31.88 | 13.12 | 3.42 | 49 |
| 616 | -43.75 | 13.12 | 13.12 | 3.42 | 98 |
| 617 | 12.25 | 50.62 | 9.38 | 3.42 | 49 |
| 618 | 8.75 | -50.62 | -5.62 | 3.41 | 49 |
| 619 | -33.25 | -35.62 | 46.88 | 3.41 | 49 |
| 620 | -54.25 | -35.62 | -5.62 | 3.41 | 49 |
| 621 | 19.25 | 43.12 | -5.62 | 3.41 | 49 |
| 622 | 12.25 | -1.88 | 24.38 | 3.41 | 49 |
| 623 | 50.75 | -50.62 | 9.38 | 3.41 | 49 |
| 624 | 22.75 | 39.38 | 20.62 | 3.40 | 49 |
| 625 | -1.75 | -39.38 | -16.88 | 3.40 | 49 |
| 626 | -15.75 | -1.88 | 1.88 | 3.40 | 98 |
| 627 | 1.75 | -84.38 | -16.88 | 3.40 | 49 |
| 628 | -47.25 | 16.88 | -24.38 | 3.40 | 49 |
| 629 | -47.25 | 43.12 | 9.38 | 3.40 | 49 |
| 630 | 5.25 | -9.38 | -20.62 | 3.40 | 49 |
| 631 | -57.75 | 1.88 | 20.62 | 3.40 | 49 |
| 632 | 5.25 | 80.62 | 31.88 | 3.40 | 49 |
| 633 | -64.75 | -35.62 | -1.88 | 3.40 | 49 |
| 634 | -1.75 | -43.12 | -9.38 | 3.40 | 49 |
| 635 | -54.25 | -9.38 | 20.62 | 3.40 | 49 |
| 636 | 1.75 | -69.38 | 46.88 | 3.40 | 49 |
| 637 | -8.75 | -54.38 | 9.38 | 3.39 | 98 |
| 638 | -12.25 | -5.62 | -20.62 | 3.39 | 49 |
| 639 | 12.25 | -9.38 | 43.12 | 3.39 | 49 |
| 640 | 12.25 | -35.62 | -16.88 | 3.39 | 49 |
| 641 | -5.25 | 1.88 | -58.12 | 3.39 | 49 |
| 642 | 12.25 | -35.62 | 65.62 | 3.39 | 49 |
| 643 | 33.25 | -13.12 | 65.62 | 3.38 | 49 |
| 644 | 19.25 | -69.38 | 20.62 | 3.38 | 49 |
| 645 | 19.25 | -31.88 | -54.38 | 3.38 | 49 |
| 646 | 29.75 | -39.38 | -54.38 | 3.38 | 49 |
| 647 | -47.25 | -16.88 | -24.38 | 3.37 | 49 |
| 648 | -36.75 | 9.38 | 54.38 | 3.37 | 49 |
| 649 | -8.75 | 43.12 | 24.38 | 3.37 | 49 |
| 650 | -26.25 | -5.62 | 65.62 | 3.37 | 49 |
| 651 | -33.25 | -39.38 | -28.12 | 3.36 | 49 |
| 652 | 33.25 | 43.12 | -16.88 | 3.36 | 49 |
| 653 | 43.75 | -58.12 | -1.88 | 3.36 | 49 |
| 654 | 29.75 | -43.12 | -20.62 | 3.36 | 49 |
| 655 | 50.75 | -16.88 | 35.62 | 3.36 | 49 |
| 656 | -19.25 | 58.12 | 39.38 | 3.36 | 49 |
| 657 | -36.75 | 61.88 | 16.88 | 3.36 | 49 |
| 658 | -1.75 | -28.12 | 20.62 | 3.35 | 98 |
| 659 | 12.25 | -69.38 | 5.62 | 3.35 | 49 |
| 660 | -19.25 | -43.12 | 31.88 | 3.35 | 98 |
| 661 | -1.75 | -76.88 | 1.88 | 3.35 | 49 |
| 662 | 33.25 | -20.62 | -9.38 | 3.35 | 49 |
| 663 | -12.25 | 20.62 | 73.12 | 3.35 | 49 |
| 664 | -8.75 | 13.12 | -13.12 | 3.35 | 49 |
| 665 | 61.25 | -35.62 | 35.62 | 3.35 | 49 |
| 666 | 43.75 | -9.38 | 46.88 | 3.34 | 49 |
| 667 | 1.75 | 28.12 | -5.62 | 3.34 | 49 |
| 668 | 47.25 | 5.62 | -1.88 | 3.34 | 98 |
| 669 | 15.75 | -5.62 | 28.12 | 3.34 | 49 |
| 670 | 15.75 | -13.12 | -73.12 | 3.34 | 49 |
| 671 | 54.25 | 1.88 | 9.38 | 3.34 | 49 |
| 672 | 22.75 | 9.38 | 46.88 | 3.34 | 49 |
| 673 | 26.25 | 16.88 | -20.62 | 3.34 | 49 |
| 674 | 40.25 | -5.62 | -9.38 | 3.33 | 49 |
| 675 | -40.25 | -5.62 | 35.62 | 3.33 | 49 |
| 676 | 61.25 | 5.62 | 31.88 | 3.33 | 49 |
| 677 | 29.75 | -1.88 | -54.38 | 3.33 | 49 |
| 678 | 1.75 | -9.38 | -16.88 | 3.33 | 49 |
| 679 | 19.25 | -13.12 | 73.12 | 3.33 | 49 |
| 680 | -12.25 | 16.88 | 20.62 | 3.33 | 49 |
| 681 | 15.75 | 46.88 | 46.88 | 3.33 | 49 |
| 682 | -43.75 | -61.88 | 9.38 | 3.33 | 49 |
| 683 | 47.25 | -20.62 | 20.62 | 3.33 | 49 |
| 684 | -5.25 | -61.88 | 54.38 | 3.33 | 49 |
| 685 | -1.75 | -69.38 | -13.12 | 3.32 | 49 |
| 686 | 50.75 | -20.62 | -43.12 | 3.32 | 49 |
| 687 | -33.25 | 46.88 | 35.62 | 3.32 | 49 |
| 688 | 54.25 | -39.38 | -24.38 | 3.32 | 49 |
| 689 | 1.75 | 84.38 | 1.88 | 3.32 | 49 |
| 690 | -12.25 | -76.88 | -9.38 | 3.32 | 49 |
| 691 | -43.75 | 16.88 | -1.88 | 3.32 | 49 |
| 692 | -15.75 | 20.62 | 20.62 | 3.32 | 49 |
| 693 | -33.25 | 9.38 | 16.88 | 3.32 | 49 |
| 694 | -29.75 | 9.38 | 61.88 | 3.31 | 49 |
| 695 | 1.75 | -5.62 | 24.38 | 3.31 | 49 |
| 696 | 40.25 | 13.12 | -46.88 | 3.31 | 49 |
| 697 | 1.75 | -58.12 | -13.12 | 3.31 | 49 |
| 698 | -5.25 | -13.12 | -61.88 | 3.31 | 49 |
| 699 | 1.75 | 1.88 | -16.88 | 3.31 | 49 |
| 700 | 12.25 | -50.62 | 39.38 | 3.31 | 49 |
| 701 | -36.75 | 5.62 | -9.38 | 3.31 | 49 |
| 702 | 12.25 | -61.88 | 16.88 | 3.31 | 49 |
| 703 | 22.75 | -50.62 | 35.62 | 3.31 | 49 |
| 704 | 19.25 | -46.88 | -5.62 | 3.31 | 49 |
| 705 | 12.25 | -50.62 | -1.88 | 3.30 | 49 |
| 706 | -12.25 | -16.88 | -65.62 | 3.30 | 49 |
| 707 | -19.25 | 24.38 | 31.88 | 3.30 | 49 |
| 708 | 47.25 | 5.62 | 31.88 | 3.30 | 49 |
| 709 | 5.25 | 46.88 | 13.12 | 3.30 | 49 |
| 710 | -22.75 | -28.12 | 31.88 | 3.30 | 49 |
| 711 | 33.25 | -76.88 | -28.12 | 3.30 | 49 |
| 712 | 22.75 | 20.62 | 16.88 | 3.29 | 49 |
| 713 | 5.25 | -16.88 | -20.62 | 3.29 | 49 |
| 714 | -54.25 | -46.88 | 13.12 | 3.29 | 49 |
house
Contrast Plot
Cluster Table
| Height control | fpr |
|---|---|
| α | 0.001 |
| Threshold (computed) | 3.3 |
| Cluster size threshold (voxels) | 0 |
| Minimum distance (mm) | 8 |
| Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
|---|---|---|---|---|---|
| 1 | 22.75 | 20.62 | 9.38 | 5.62 | 639 |
| 2 | -22.75 | 24.38 | 13.12 | 5.01 | 147 |
| 3 | 47.25 | -54.38 | -16.88 | 5.00 | 98 |
| 4 | 22.75 | -5.62 | 20.62 | 4.99 | 49 |
| 5 | 22.75 | 13.12 | 20.62 | 4.88 | 98 |
| 6 | -15.75 | 24.38 | 9.38 | 4.79 | 639 |
| 7 | 33.25 | 28.12 | 28.12 | 4.64 | 98 |
| 8 | -22.75 | -39.38 | -1.88 | 4.59 | 246 |
| 8a | -22.75 | -28.12 | -1.88 | 4.38 | |
| 9 | 12.25 | 24.38 | 20.62 | 4.57 | 147 |
| 10 | -29.75 | 28.12 | 5.62 | 4.56 | 49 |
| 11 | -22.75 | 16.88 | 5.62 | 4.39 | 98 |
| 12 | 1.75 | 31.88 | -13.12 | 4.33 | 49 |
| 13 | -22.75 | 5.62 | 24.38 | 4.29 | 147 |
| 14 | 19.25 | -16.88 | 24.38 | 4.28 | 98 |
| 15 | -15.75 | -35.62 | -1.88 | 4.25 | 98 |
| 16 | 19.25 | 5.62 | 43.12 | 4.25 | 98 |
| 17 | -12.25 | -43.12 | -50.62 | 4.25 | 49 |
| 18 | 8.75 | -24.38 | 24.38 | 4.21 | 49 |
| 19 | -50.75 | 9.38 | -28.12 | 4.20 | 49 |
| 20 | -33.25 | -24.38 | 35.62 | 4.19 | 49 |
| 21 | 1.75 | 13.12 | -16.88 | 4.19 | 49 |
| 22 | -12.25 | -16.88 | -20.62 | 4.18 | 49 |
| 23 | -8.75 | 35.62 | 43.12 | 4.16 | 49 |
| 24 | -22.75 | 39.38 | 46.88 | 4.15 | 147 |
| 25 | 26.25 | -24.38 | -69.38 | 4.14 | 49 |
| 26 | 50.75 | 50.62 | -1.88 | 4.14 | 49 |
| 27 | 22.75 | -31.88 | 1.88 | 4.11 | 49 |
| 28 | -12.25 | 13.12 | 1.88 | 4.11 | 98 |
| 29 | -15.75 | 20.62 | 20.62 | 4.10 | 49 |
| 30 | 8.75 | -9.38 | 31.88 | 4.09 | 147 |
| 31 | -12.25 | -28.12 | -76.88 | 4.09 | 49 |
| 32 | -15.75 | -46.88 | 20.62 | 4.08 | 98 |
| 33 | 26.25 | -61.88 | 31.88 | 4.05 | 49 |
| 34 | 36.75 | -54.38 | -20.62 | 4.01 | 49 |
| 35 | 15.75 | -54.38 | 5.62 | 4.00 | 49 |
| 36 | -12.25 | 1.88 | -61.88 | 4.00 | 98 |
| 37 | -33.25 | -58.12 | 35.62 | 3.99 | 49 |
| 38 | -54.25 | -20.62 | -9.38 | 3.97 | 49 |
| 39 | -26.25 | 9.38 | 20.62 | 3.97 | 98 |
| 40 | -15.75 | 20.62 | 1.88 | 3.96 | 49 |
| 41 | 15.75 | -28.12 | 24.38 | 3.92 | 49 |
| 42 | 15.75 | -39.38 | 13.12 | 3.92 | 49 |
| 43 | 22.75 | -16.88 | 16.88 | 3.91 | 49 |
| 44 | 22.75 | 16.88 | 5.62 | 3.90 | 49 |
| 45 | 33.25 | -43.12 | -35.62 | 3.89 | 49 |
| 46 | -29.75 | 16.88 | 9.38 | 3.89 | 49 |
| 47 | 8.75 | -16.88 | 31.88 | 3.89 | 49 |
| 48 | 26.25 | 9.38 | -31.88 | 3.87 | 49 |
| 49 | 22.75 | -43.12 | 9.38 | 3.86 | 49 |
| 50 | 43.75 | -1.88 | 20.62 | 3.86 | 49 |
| 51 | -40.25 | -58.12 | 28.12 | 3.85 | 49 |
| 52 | 22.75 | -43.12 | -31.88 | 3.84 | 49 |
| 53 | -22.75 | 20.62 | 20.62 | 3.83 | 98 |
| 54 | -15.75 | 31.88 | 5.62 | 3.83 | 49 |
| 55 | 36.75 | -13.12 | -31.88 | 3.83 | 49 |
| 56 | -54.25 | -13.12 | -1.88 | 3.82 | 49 |
| 57 | 5.25 | -20.62 | -13.12 | 3.82 | 49 |
| 58 | -29.75 | -31.88 | 35.62 | 3.81 | 49 |
| 59 | 26.25 | 13.12 | 13.12 | 3.79 | 49 |
| 60 | -26.25 | 13.12 | 16.88 | 3.78 | 49 |
| 61 | 33.25 | 5.62 | -39.38 | 3.75 | 49 |
| 62 | 40.25 | 31.88 | -24.38 | 3.74 | 49 |
| 63 | 5.25 | -65.62 | 54.38 | 3.73 | 49 |
| 64 | -15.75 | -20.62 | -28.12 | 3.73 | 49 |
| 65 | 26.25 | -1.88 | 13.12 | 3.72 | 49 |
| 66 | -15.75 | 58.12 | 5.62 | 3.72 | 49 |
| 67 | 26.25 | 5.62 | 9.38 | 3.72 | 49 |
| 68 | -15.75 | -50.62 | 24.38 | 3.71 | 49 |
| 69 | 50.75 | -31.88 | -50.62 | 3.70 | 49 |
| 70 | -8.75 | 1.88 | 28.12 | 3.68 | 98 |
| 71 | 33.25 | 54.38 | 28.12 | 3.67 | 49 |
| 72 | -47.25 | -76.88 | 9.38 | 3.67 | 49 |
| 73 | 33.25 | 13.12 | -5.62 | 3.66 | 49 |
| 74 | 8.75 | 20.62 | 20.62 | 3.65 | 49 |
| 75 | -33.25 | -73.12 | -31.88 | 3.64 | 98 |
| 76 | 12.25 | -31.88 | -73.12 | 3.63 | 49 |
| 77 | 5.25 | 31.88 | 50.62 | 3.63 | 49 |
| 78 | -12.25 | -39.38 | 46.88 | 3.63 | 49 |
| 79 | -19.25 | 61.88 | 20.62 | 3.62 | 49 |
| 80 | 40.25 | -39.38 | 13.12 | 3.62 | 49 |
| 81 | 40.25 | -13.12 | -43.12 | 3.62 | 49 |
| 82 | -22.75 | -24.38 | 46.88 | 3.61 | 49 |
| 83 | -33.25 | 9.38 | 5.62 | 3.61 | 49 |
| 84 | 33.25 | -76.88 | -24.38 | 3.60 | 49 |
| 85 | 29.75 | -50.62 | -39.38 | 3.60 | 49 |
| 86 | -1.75 | -61.88 | -39.38 | 3.60 | 49 |
| 87 | 15.75 | -1.88 | -16.88 | 3.59 | 49 |
| 88 | -33.25 | 13.12 | -1.88 | 3.58 | 49 |
| 89 | -43.75 | -9.38 | 39.38 | 3.58 | 49 |
| 90 | 33.25 | 28.12 | -46.88 | 3.58 | 49 |
| 91 | 26.25 | 9.38 | -24.38 | 3.57 | 49 |
| 92 | -19.25 | 31.88 | 20.62 | 3.57 | 49 |
| 93 | -36.75 | -39.38 | -46.88 | 3.57 | 49 |
| 94 | 8.75 | 43.12 | -5.62 | 3.56 | 49 |
| 95 | 8.75 | -61.88 | -50.62 | 3.56 | 49 |
| 96 | -5.25 | 39.38 | -20.62 | 3.56 | 98 |
| 97 | 22.75 | -13.12 | 20.62 | 3.56 | 49 |
| 98 | 40.25 | -50.62 | -54.38 | 3.56 | 98 |
| 99 | 33.25 | 9.38 | 1.88 | 3.55 | 49 |
| 100 | 1.75 | -46.88 | -5.62 | 3.55 | 49 |
| 101 | -1.75 | -58.12 | -28.12 | 3.55 | 49 |
| 102 | -12.25 | -5.62 | -13.12 | 3.54 | 98 |
| 103 | -15.75 | 31.88 | 24.38 | 3.54 | 49 |
| 104 | 57.75 | -54.38 | 1.88 | 3.53 | 49 |
| 105 | -40.25 | -1.88 | 24.38 | 3.52 | 49 |
| 106 | 22.75 | -39.38 | 46.88 | 3.52 | 49 |
| 107 | -26.25 | 1.88 | 13.12 | 3.51 | 49 |
| 108 | -22.75 | -9.38 | -65.62 | 3.51 | 49 |
| 109 | -36.75 | -65.62 | -16.88 | 3.51 | 49 |
| 110 | -26.25 | -50.62 | -46.88 | 3.51 | 49 |
| 111 | 26.25 | -73.12 | 31.88 | 3.50 | 49 |
| 112 | 26.25 | -13.12 | 54.38 | 3.50 | 49 |
| 113 | 15.75 | -50.62 | 9.38 | 3.50 | 49 |
| 114 | -36.75 | 24.38 | 13.12 | 3.50 | 49 |
| 115 | -33.25 | 61.88 | 39.38 | 3.50 | 49 |
| 116 | 19.25 | -73.12 | -16.88 | 3.49 | 98 |
| 117 | -40.25 | -69.38 | 20.62 | 3.49 | 49 |
| 118 | -12.25 | -43.12 | -16.88 | 3.48 | 49 |
| 119 | 64.75 | 1.88 | 35.62 | 3.48 | 49 |
| 120 | -8.75 | -24.38 | 1.88 | 3.48 | 49 |
| 121 | 22.75 | -76.88 | 20.62 | 3.47 | 49 |
| 122 | -50.75 | 31.88 | 9.38 | 3.47 | 49 |
| 123 | 57.75 | -16.88 | 16.88 | 3.46 | 49 |
| 124 | 50.75 | -43.12 | -1.88 | 3.44 | 49 |
| 125 | 50.75 | 13.12 | 9.38 | 3.43 | 49 |
| 126 | -64.75 | -5.62 | 28.12 | 3.43 | 49 |
| 127 | -15.75 | -24.38 | -9.38 | 3.43 | 49 |
| 128 | 43.75 | 20.62 | 16.88 | 3.43 | 49 |
| 129 | -64.75 | -24.38 | -20.62 | 3.42 | 49 |
| 130 | 5.25 | -43.12 | -1.88 | 3.42 | 49 |
| 131 | 1.75 | 54.38 | -9.38 | 3.42 | 49 |
| 132 | -8.75 | -46.88 | -31.88 | 3.42 | 49 |
| 133 | -8.75 | -28.12 | 5.62 | 3.42 | 49 |
| 134 | -15.75 | -61.88 | 43.12 | 3.42 | 49 |
| 135 | 29.75 | 1.88 | 13.12 | 3.42 | 49 |
| 136 | 36.75 | 28.12 | 39.38 | 3.41 | 49 |
| 137 | 19.25 | -58.12 | 20.62 | 3.41 | 49 |
| 138 | 29.75 | -65.62 | -24.38 | 3.41 | 49 |
| 139 | 22.75 | -9.38 | 13.12 | 3.41 | 49 |
| 140 | 36.75 | -50.62 | -24.38 | 3.40 | 49 |
| 141 | 36.75 | -61.88 | -13.12 | 3.40 | 49 |
| 142 | -15.75 | -31.88 | -50.62 | 3.40 | 49 |
| 143 | -40.25 | -28.12 | -24.38 | 3.40 | 49 |
| 144 | -40.25 | -46.88 | 39.38 | 3.40 | 49 |
| 145 | 22.75 | -73.12 | -13.12 | 3.39 | 49 |
| 146 | 22.75 | -9.38 | 35.62 | 3.39 | 49 |
| 147 | 22.75 | -65.62 | 20.62 | 3.39 | 49 |
| 148 | 29.75 | -16.88 | 46.88 | 3.39 | 49 |
| 149 | -26.25 | 20.62 | -1.88 | 3.38 | 49 |
| 150 | 15.75 | -1.88 | 69.38 | 3.38 | 49 |
| 151 | -22.75 | -58.12 | 24.38 | 3.37 | 49 |
| 152 | 57.75 | 16.88 | -1.88 | 3.37 | 49 |
| 153 | -40.25 | 24.38 | 35.62 | 3.37 | 49 |
| 154 | 26.25 | 5.62 | -28.12 | 3.36 | 49 |
| 155 | -15.75 | 16.88 | 13.12 | 3.35 | 49 |
| 156 | 12.25 | 1.88 | 28.12 | 3.35 | 49 |
| 157 | -5.25 | 28.12 | 13.12 | 3.35 | 49 |
| 158 | 15.75 | 24.38 | -13.12 | 3.34 | 49 |
| 159 | -8.75 | 28.12 | 28.12 | 3.34 | 49 |
| 160 | -12.25 | -58.12 | -46.88 | 3.34 | 49 |
| 161 | -12.25 | -65.62 | -39.38 | 3.34 | 49 |
| 162 | 19.25 | 24.38 | 5.62 | 3.34 | 49 |
| 163 | -22.75 | -16.88 | 24.38 | 3.33 | 49 |
| 164 | -12.25 | 43.12 | 46.88 | 3.33 | 49 |
| 165 | -15.75 | -69.38 | 46.88 | 3.33 | 49 |
| 166 | 26.25 | -16.88 | -9.38 | 3.32 | 49 |
| 167 | -26.25 | -31.88 | -69.38 | 3.32 | 49 |
| 168 | 26.25 | -50.62 | -35.62 | 3.32 | 49 |
| 169 | -36.75 | -24.38 | 1.88 | 3.32 | 49 |
| 170 | 19.25 | -35.62 | 1.88 | 3.32 | 49 |
| 171 | 61.25 | -9.38 | 16.88 | 3.31 | 49 |
| 172 | 36.75 | 20.62 | -13.12 | 3.31 | 49 |
| 173 | 8.75 | -80.62 | -5.62 | 3.31 | 49 |
| 174 | 22.75 | 1.88 | 20.62 | 3.30 | 49 |
| 175 | 36.75 | 28.12 | 1.88 | 3.30 | 49 |
| 176 | 12.25 | -5.62 | -5.62 | 3.30 | 49 |
| 177 | -40.25 | 50.62 | 1.88 | 3.30 | 49 |
| 178 | -15.75 | -28.12 | -5.62 | 3.29 | 49 |
| 179 | 29.75 | -54.38 | -24.38 | 3.29 | 49 |
chair
Contrast Plot
Cluster Table
| Height control | fpr |
|---|---|
| α | 0.001 |
| Threshold (computed) | 3.3 |
| Cluster size threshold (voxels) | 0 |
| Minimum distance (mm) | 8 |
| Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
|---|---|---|---|---|---|
| 1 | 40.25 | -46.88 | 13.12 | 4.86 | 147 |
| 2 | -36.75 | -76.88 | 1.88 | 4.23 | 49 |
| 3 | 12.25 | 35.62 | -5.62 | 4.20 | 49 |
| 4 | -50.75 | 39.38 | 16.88 | 4.17 | 49 |
| 5 | -50.75 | -39.38 | -1.88 | 3.94 | 147 |
| 6 | -54.25 | -43.12 | 46.88 | 3.90 | 49 |
| 7 | 33.25 | -58.12 | -1.88 | 3.89 | 49 |
| 8 | -29.75 | -43.12 | -58.12 | 3.88 | 49 |
| 9 | -36.75 | -61.88 | 43.12 | 3.84 | 49 |
| 10 | 19.25 | 20.62 | 20.62 | 3.78 | 49 |
| 11 | 12.25 | 5.62 | -24.38 | 3.77 | 98 |
| 12 | 22.75 | 24.38 | 16.88 | 3.76 | 49 |
| 13 | 33.25 | 43.12 | -16.88 | 3.75 | 49 |
| 14 | 26.25 | -46.88 | -35.62 | 3.75 | 49 |
| 15 | -15.75 | -1.88 | -16.88 | 3.74 | 49 |
| 16 | 26.25 | 16.88 | 16.88 | 3.73 | 49 |
| 17 | -5.25 | 43.12 | 50.62 | 3.67 | 49 |
| 18 | 33.25 | 13.12 | -1.88 | 3.66 | 49 |
| 19 | -57.75 | -9.38 | -1.88 | 3.62 | 49 |
| 20 | -22.75 | -31.88 | -69.38 | 3.61 | 49 |
| 21 | -22.75 | 24.38 | 13.12 | 3.57 | 49 |
| 22 | -57.75 | 13.12 | 1.88 | 3.52 | 49 |
| 23 | 33.25 | -58.12 | -16.88 | 3.50 | 49 |
| 24 | -29.75 | 20.62 | 46.88 | 3.48 | 49 |
| 25 | 12.25 | 16.88 | -20.62 | 3.44 | 49 |
| 26 | 33.25 | 28.12 | -31.88 | 3.43 | 49 |
| 27 | 36.75 | -24.38 | 20.62 | 3.43 | 49 |
| 28 | 43.75 | -28.12 | -13.12 | 3.40 | 49 |
| 29 | 29.75 | 13.12 | -43.12 | 3.39 | 49 |
| 30 | 12.25 | 28.12 | -16.88 | 3.38 | 49 |
| 31 | -22.75 | -43.12 | -31.88 | 3.37 | 49 |
| 32 | -1.75 | 5.62 | 31.88 | 3.37 | 49 |
| 33 | 33.25 | -20.62 | -58.12 | 3.35 | 49 |
| 34 | -15.75 | -35.62 | -24.38 | 3.34 | 49 |
| 35 | 29.75 | -43.12 | -35.62 | 3.34 | 49 |
| 36 | -22.75 | 9.38 | 24.38 | 3.34 | 49 |
| 37 | -36.75 | -46.88 | -54.38 | 3.33 | 49 |
| 38 | 33.25 | 9.38 | -13.12 | 3.33 | 49 |
| 39 | 1.75 | 28.12 | -35.62 | 3.32 | 49 |
| 40 | 36.75 | -28.12 | -9.38 | 3.29 | 49 |
scrambledpix
Contrast Plot
Cluster Table
| Height control | fpr |
|---|---|
| α | 0.001 |
| Threshold (computed) | 3.3 |
| Cluster size threshold (voxels) | 0 |
| Minimum distance (mm) | 8 |
| Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
|---|---|---|---|---|---|
| 1 | 1.75 | 24.38 | -13.12 | 5.74 | 49 |
| 2 | -22.75 | -46.88 | 43.12 | 4.82 | 98 |
| 3 | -15.75 | 61.88 | -9.38 | 4.79 | 147 |
| 4 | -29.75 | -61.88 | -31.88 | 4.65 | 49 |
| 5 | 50.75 | 16.88 | -28.12 | 4.14 | 147 |
| 6 | -22.75 | -54.38 | -9.38 | 3.94 | 49 |
| 7 | 5.25 | 43.12 | -28.12 | 3.92 | 49 |
| 8 | -22.75 | -9.38 | 20.62 | 3.82 | 49 |
| 9 | 40.25 | -16.88 | -39.38 | 3.80 | 49 |
| 10 | -64.75 | -31.88 | 39.38 | 3.78 | 49 |
| 11 | -26.25 | -69.38 | 39.38 | 3.59 | 49 |
| 12 | 22.75 | -24.38 | 46.88 | 3.56 | 49 |
| 13 | 22.75 | 46.88 | -5.62 | 3.54 | 49 |
| 14 | -1.75 | 5.62 | 31.88 | 3.53 | 49 |
| 15 | -40.25 | -16.88 | -54.38 | 3.46 | 49 |
| 16 | -15.75 | -43.12 | -16.88 | 3.44 | 49 |
| 17 | 33.25 | 35.62 | -28.12 | 3.44 | 49 |
| 18 | 26.25 | -24.38 | -69.38 | 3.40 | 49 |
| 19 | 1.75 | 13.12 | 31.88 | 3.34 | 49 |
| 20 | 33.25 | -20.62 | 43.12 | 3.33 | 49 |
face
Contrast Plot
Cluster Table
| Height control | fpr |
|---|---|
| α | 0.001 |
| Threshold (computed) | 3.3 |
| Cluster size threshold (voxels) | 0 |
| Minimum distance (mm) | 8 |
| Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
|---|---|---|---|---|---|
| 1 | 1.75 | 24.38 | -13.12 | 5.17 | 98 |
| 2 | -50.75 | -50.62 | 13.12 | 5.09 | 196 |
| 2a | -47.25 | -58.12 | 13.12 | 3.37 | |
| 3 | -47.25 | -43.12 | -35.62 | 4.74 | 49 |
| 4 | 68.25 | -13.12 | -9.38 | 4.71 | 147 |
| 5 | -47.25 | -39.38 | 16.88 | 4.50 | 98 |
| 6 | 29.75 | -46.88 | 35.62 | 4.40 | 49 |
| 7 | 29.75 | -54.38 | 46.88 | 4.38 | 49 |
| 8 | -33.25 | 50.62 | 16.88 | 4.37 | 147 |
| 9 | -57.75 | -16.88 | 1.88 | 4.37 | 147 |
| 10 | -36.75 | 31.88 | 16.88 | 4.22 | 98 |
| 11 | -12.25 | -58.12 | -16.88 | 4.22 | 49 |
| 12 | -26.25 | 24.38 | -13.12 | 4.16 | 147 |
| 13 | -40.25 | 46.88 | 13.12 | 4.14 | 98 |
| 14 | 22.75 | -50.62 | -24.38 | 4.11 | 49 |
| 15 | -22.75 | 39.38 | 13.12 | 4.09 | 49 |
| 16 | -15.75 | 13.12 | 73.12 | 4.02 | 98 |
| 17 | 40.25 | 28.12 | 39.38 | 4.01 | 98 |
| 18 | 5.25 | 20.62 | 65.62 | 3.95 | 49 |
| 19 | 5.25 | -24.38 | -20.62 | 3.93 | 49 |
| 20 | -47.25 | -50.62 | 20.62 | 3.88 | 49 |
| 21 | 43.75 | 35.62 | 35.62 | 3.83 | 98 |
| 22 | -47.25 | -28.12 | 28.12 | 3.80 | 147 |
| 23 | -1.75 | 31.88 | 61.88 | 3.79 | 98 |
| 24 | -54.25 | -43.12 | 20.62 | 3.77 | 49 |
| 25 | -8.75 | 13.12 | 65.62 | 3.77 | 49 |
| 26 | 1.75 | -43.12 | -1.88 | 3.75 | 49 |
| 27 | -8.75 | -46.88 | -31.88 | 3.73 | 49 |
| 28 | -47.25 | -61.88 | -5.62 | 3.72 | 49 |
| 29 | -19.25 | -73.12 | 39.38 | 3.72 | 49 |
| 30 | -26.25 | -88.12 | -9.38 | 3.71 | 98 |
| 31 | 12.25 | 28.12 | 61.88 | 3.71 | 49 |
| 32 | -50.75 | -35.62 | 43.12 | 3.70 | 49 |
| 33 | -36.75 | -43.12 | 39.38 | 3.70 | 147 |
| 34 | -47.25 | 24.38 | 20.62 | 3.69 | 49 |
| 35 | -36.75 | -31.88 | -46.88 | 3.69 | 49 |
| 36 | -47.25 | -54.38 | -9.38 | 3.69 | 49 |
| 37 | 40.25 | 43.12 | 16.88 | 3.69 | 49 |
| 38 | -57.75 | -9.38 | -1.88 | 3.67 | 49 |
| 39 | -57.75 | 31.88 | 31.88 | 3.67 | 49 |
| 40 | 5.25 | -58.12 | -24.38 | 3.66 | 98 |
| 41 | -36.75 | 31.88 | 35.62 | 3.65 | 147 |
| 42 | 33.25 | -46.88 | -39.38 | 3.64 | 49 |
| 43 | -43.75 | -31.88 | 35.62 | 3.62 | 49 |
| 44 | -40.25 | -43.12 | -16.88 | 3.60 | 49 |
| 45 | -12.25 | -76.88 | 28.12 | 3.60 | 49 |
| 46 | -8.75 | -28.12 | 61.88 | 3.58 | 49 |
| 47 | 19.25 | -16.88 | 39.38 | 3.56 | 49 |
| 48 | 26.25 | -43.12 | 35.62 | 3.56 | 49 |
| 49 | 43.75 | -54.38 | 9.38 | 3.53 | 49 |
| 50 | 19.25 | -46.88 | -20.62 | 3.53 | 49 |
| 51 | -29.75 | 31.88 | -9.38 | 3.52 | 49 |
| 52 | 40.25 | -39.38 | -24.38 | 3.51 | 49 |
| 53 | 36.75 | 61.88 | 28.12 | 3.51 | 49 |
| 54 | -15.75 | -73.12 | 16.88 | 3.50 | 49 |
| 55 | 8.75 | -1.88 | 9.38 | 3.50 | 49 |
| 56 | -47.25 | -46.88 | 16.88 | 3.49 | 49 |
| 57 | -22.75 | -46.88 | -50.62 | 3.49 | 49 |
| 58 | 22.75 | 31.88 | 28.12 | 3.49 | 49 |
| 59 | 12.25 | -58.12 | -20.62 | 3.48 | 49 |
| 60 | 5.25 | -65.62 | 13.12 | 3.48 | 49 |
| 61 | -47.25 | -16.88 | -35.62 | 3.48 | 49 |
| 62 | -19.25 | -61.88 | -9.38 | 3.47 | 49 |
| 63 | -15.75 | -13.12 | 24.38 | 3.47 | 98 |
| 64 | -26.25 | -43.12 | -43.12 | 3.47 | 49 |
| 65 | -12.25 | -39.38 | 58.12 | 3.46 | 49 |
| 66 | -1.75 | 39.38 | -20.62 | 3.46 | 49 |
| 67 | 26.25 | -43.12 | -31.88 | 3.46 | 49 |
| 68 | 33.25 | -61.88 | -13.12 | 3.45 | 49 |
| 69 | 5.25 | 31.88 | -35.62 | 3.45 | 49 |
| 70 | -40.25 | 50.62 | 20.62 | 3.43 | 49 |
| 71 | -50.75 | -28.12 | 35.62 | 3.42 | 49 |
| 72 | 15.75 | -54.38 | -20.62 | 3.41 | 49 |
| 73 | 36.75 | -43.12 | 5.62 | 3.40 | 49 |
| 74 | -40.25 | -35.62 | -35.62 | 3.40 | 49 |
| 75 | -33.25 | 39.38 | 54.38 | 3.39 | 49 |
| 76 | -15.75 | -54.38 | 50.62 | 3.38 | 49 |
| 77 | 29.75 | -35.62 | 35.62 | 3.38 | 49 |
| 78 | -43.75 | -39.38 | -9.38 | 3.36 | 49 |
| 79 | -29.75 | 28.12 | 39.38 | 3.36 | 49 |
| 80 | -29.75 | 28.12 | 13.12 | 3.35 | 49 |
| 81 | -1.75 | -20.62 | 24.38 | 3.35 | 49 |
| 82 | 26.25 | -54.38 | -20.62 | 3.35 | 49 |
| 83 | 33.25 | -58.12 | -16.88 | 3.34 | 49 |
| 84 | -47.25 | -31.88 | 5.62 | 3.34 | 49 |
| 85 | -1.75 | -39.38 | 5.62 | 3.33 | 49 |
| 86 | 57.75 | -35.62 | 43.12 | 3.33 | 49 |
| 87 | -40.25 | 20.62 | 54.38 | 3.32 | 49 |
| 88 | -47.25 | -46.88 | -31.88 | 3.32 | 49 |
| 89 | -33.25 | 31.88 | 46.88 | 3.32 | 49 |
| 90 | -8.75 | -58.12 | -43.12 | 3.30 | 49 |
| 91 | -33.25 | -58.12 | 20.62 | 3.29 | 49 |
shoe
Contrast Plot
Cluster Table
| Height control | fpr |
|---|---|
| α | 0.001 |
| Threshold (computed) | 3.3 |
| Cluster size threshold (voxels) | 0 |
| Minimum distance (mm) | 8 |
| Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
|---|---|---|---|---|---|
| 1 | 22.75 | -9.38 | 35.62 | 4.74 | 49 |
| 2 | 61.25 | 24.38 | 31.88 | 4.22 | 147 |
| 3 | 36.75 | 46.88 | -16.88 | 3.95 | 49 |
| 4 | 50.75 | -35.62 | -35.62 | 3.83 | 49 |
| 5 | 22.75 | -69.38 | -28.12 | 3.82 | 49 |
| 6 | 19.25 | -20.62 | -28.12 | 3.81 | 49 |
| 7 | 19.25 | 73.12 | 20.62 | 3.76 | 49 |
| 8 | -54.25 | -65.62 | 16.88 | 3.70 | 49 |
| 9 | -19.25 | 20.62 | 43.12 | 3.69 | 49 |
| 10 | -47.25 | -16.88 | -24.38 | 3.66 | 49 |
| 11 | -1.75 | -28.12 | -73.12 | 3.65 | 49 |
| 12 | 19.25 | -28.12 | -54.38 | 3.59 | 49 |
| 13 | 15.75 | -24.38 | -73.12 | 3.57 | 49 |
| 14 | -68.25 | -20.62 | 24.38 | 3.56 | 49 |
| 15 | -68.25 | -9.38 | 9.38 | 3.53 | 49 |
| 16 | 26.25 | -46.88 | -24.38 | 3.52 | 49 |
| 17 | -1.75 | -20.62 | 24.38 | 3.52 | 49 |
| 18 | 36.75 | 28.12 | 39.38 | 3.45 | 49 |
| 19 | 15.75 | 16.88 | 58.12 | 3.43 | 49 |
| 20 | 33.25 | 9.38 | 61.88 | 3.43 | 49 |
| 21 | -12.25 | 1.88 | -69.38 | 3.37 | 49 |
| 22 | 26.25 | -61.88 | 13.12 | 3.36 | 49 |
| 23 | -29.75 | 9.38 | 35.62 | 3.36 | 49 |
| 24 | 1.75 | -24.38 | -39.38 | 3.36 | 49 |
| 25 | -12.25 | 39.38 | 65.62 | 3.36 | 49 |
| 26 | 12.25 | 5.62 | 31.88 | 3.33 | 49 |
| 27 | 64.75 | -1.88 | 31.88 | 3.32 | 49 |
| 28 | 26.25 | 35.62 | 28.12 | 3.30 | 49 |
cat
Contrast Plot
Cluster Table
| Height control | fpr |
|---|---|
| α | 0.001 |
| Threshold (computed) | 3.3 |
| Cluster size threshold (voxels) | 0 |
| Minimum distance (mm) | 8 |
| Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
|---|---|---|---|---|---|
| 1 | -12.25 | -76.88 | 31.88 | 4.68 | 98 |
| 2 | 43.75 | -5.62 | 16.88 | 4.53 | 196 |
| 3 | -15.75 | -20.62 | -58.12 | 4.41 | 98 |
| 4 | -40.25 | -65.62 | 13.12 | 4.36 | 49 |
| 5 | 1.75 | 35.62 | -13.12 | 4.29 | 49 |
| 6 | -12.25 | -58.12 | -16.88 | 4.27 | 49 |
| 7 | 5.25 | -61.88 | -24.38 | 4.27 | 98 |
| 8 | 43.75 | 5.62 | 1.88 | 4.26 | 344 |
| 9 | -1.75 | 50.62 | -9.38 | 4.25 | 246 |
| 10 | 5.25 | -24.38 | -73.12 | 4.22 | 49 |
| 11 | 22.75 | -61.88 | -54.38 | 4.04 | 49 |
| 12 | 15.75 | -16.88 | 46.88 | 4.02 | 49 |
| 13 | 19.25 | -31.88 | -69.38 | 3.98 | 49 |
| 14 | 22.75 | -24.38 | -58.12 | 3.98 | 49 |
| 15 | -64.75 | -9.38 | -24.38 | 3.98 | 49 |
| 16 | 36.75 | 9.38 | -35.62 | 3.96 | 49 |
| 17 | 36.75 | 69.38 | 5.62 | 3.91 | 98 |
| 18 | 12.25 | -61.88 | -31.88 | 3.86 | 98 |
| 19 | 1.75 | 28.12 | -35.62 | 3.85 | 49 |
| 20 | 47.25 | 1.88 | -46.88 | 3.82 | 49 |
| 21 | 8.75 | -65.62 | -24.38 | 3.82 | 49 |
| 22 | -29.75 | 39.38 | 54.38 | 3.81 | 49 |
| 23 | 15.75 | -31.88 | -61.88 | 3.76 | 49 |
| 24 | 5.25 | -80.62 | 9.38 | 3.75 | 49 |
| 25 | 43.75 | 24.38 | 9.38 | 3.72 | 49 |
| 26 | 40.25 | -5.62 | -5.62 | 3.70 | 49 |
| 27 | 50.75 | 28.12 | 24.38 | 3.70 | 49 |
| 28 | 22.75 | -58.12 | -61.88 | 3.70 | 49 |
| 29 | -40.25 | -46.88 | 16.88 | 3.70 | 49 |
| 30 | 5.25 | 43.12 | 50.62 | 3.63 | 49 |
| 31 | -12.25 | -73.12 | -31.88 | 3.62 | 49 |
| 32 | -26.25 | -80.62 | 13.12 | 3.57 | 98 |
| 33 | 50.75 | 1.88 | -24.38 | 3.57 | 49 |
| 34 | -54.25 | -46.88 | 5.62 | 3.57 | 98 |
| 35 | -40.25 | -69.38 | 35.62 | 3.53 | 49 |
| 36 | 36.75 | 28.12 | -20.62 | 3.53 | 49 |
| 37 | 8.75 | 16.88 | -16.88 | 3.53 | 49 |
| 38 | 5.25 | 20.62 | 50.62 | 3.53 | 49 |
| 39 | -47.25 | -31.88 | -43.12 | 3.52 | 49 |
| 40 | -5.25 | -50.62 | -13.12 | 3.50 | 49 |
| 41 | -29.75 | -46.88 | 5.62 | 3.48 | 49 |
| 42 | -40.25 | -5.62 | 50.62 | 3.48 | 49 |
| 43 | 29.75 | 1.88 | -31.88 | 3.47 | 49 |
| 44 | -8.75 | -35.62 | -24.38 | 3.44 | 49 |
| 45 | 61.25 | -31.88 | 43.12 | 3.44 | 49 |
| 46 | 5.25 | -31.88 | -69.38 | 3.43 | 49 |
| 47 | -22.75 | 65.62 | 39.38 | 3.42 | 98 |
| 48 | 36.75 | 28.12 | 43.12 | 3.38 | 147 |
| 49 | -8.75 | -46.88 | -28.12 | 3.36 | 49 |
| 50 | 12.25 | -39.38 | -31.88 | 3.36 | 49 |
| 51 | -29.75 | -20.62 | -35.62 | 3.35 | 49 |
| 52 | -8.75 | -28.12 | -61.88 | 3.35 | 49 |
| 53 | 61.25 | -31.88 | 20.62 | 3.35 | 49 |
| 54 | -47.25 | -43.12 | 43.12 | 3.34 | 49 |
| 55 | -40.25 | -31.88 | -58.12 | 3.34 | 49 |
| 56 | 5.25 | -73.12 | -20.62 | 3.32 | 49 |
| 57 | 15.75 | 39.38 | -20.62 | 3.31 | 49 |
| 58 | -36.75 | -50.62 | -39.38 | 3.31 | 49 |
| 59 | 26.25 | -65.62 | 13.12 | 3.30 | 49 |
| 60 | 40.25 | -20.62 | -39.38 | 3.30 | 49 |
scissors
Contrast Plot
Cluster Table
| Height control | fpr |
|---|---|
| α | 0.001 |
| Threshold (computed) | 3.3 |
| Cluster size threshold (voxels) | 0 |
| Minimum distance (mm) | 8 |
| Cluster ID | X | Y | Z | Peak Stat | Cluster Size (mm3) |
|---|---|---|---|---|---|
| 1 | -50.75 | 20.62 | -24.38 | 6.55 | 1132 |
| 2 | -19.25 | 84.38 | 20.62 | 6.20 | 1476 |
| 2a | -26.25 | 80.62 | 16.88 | 4.90 | |
| 2b | -15.75 | 76.88 | 31.88 | 4.42 | |
| 3 | -26.25 | 24.38 | 28.12 | 5.83 | 147 |
| 4 | 36.75 | 20.62 | -31.88 | 5.61 | 246 |
| 5 | 29.75 | 5.62 | -5.62 | 5.32 | 98 |
| 6 | -12.25 | 20.62 | -46.88 | 5.25 | 344 |
| 7 | 12.25 | -35.62 | -69.38 | 5.14 | 98 |
| 8 | 5.25 | 24.38 | -46.88 | 5.08 | 393 |
| 9 | 15.75 | 76.88 | 28.12 | 5.05 | 49 |
| 10 | -12.25 | 76.88 | 20.62 | 5.02 | 935 |
| 10a | -5.25 | 84.38 | 1.88 | 4.38 | |
| 10b | -5.25 | 84.38 | 20.62 | 4.38 | |
| 10c | -5.25 | 80.62 | 13.12 | 4.22 | |
| 11 | -19.25 | 61.88 | 50.62 | 5.00 | 49 |
| 12 | -1.75 | 1.88 | -61.88 | 4.99 | 295 |
| 13 | 12.25 | 13.12 | -43.12 | 4.98 | 49 |
| 14 | 33.25 | 5.62 | -46.88 | 4.92 | 49 |
| 15 | 1.75 | -28.12 | -61.88 | 4.88 | 49 |
| 16 | -54.25 | -39.38 | -31.88 | 4.79 | 49 |
| 17 | -22.75 | -54.38 | -50.62 | 4.66 | 295 |
| 18 | 12.25 | -61.88 | -46.88 | 4.56 | 49 |
| 19 | 12.25 | 80.62 | -5.62 | 4.49 | 49 |
| 20 | 36.75 | 28.12 | -35.62 | 4.46 | 295 |
| 21 | -26.25 | -13.12 | 1.88 | 4.45 | 49 |
| 22 | -15.75 | -43.12 | -46.88 | 4.42 | 98 |
| 23 | -29.75 | 20.62 | -46.88 | 4.41 | 98 |
| 24 | -12.25 | 9.38 | -58.12 | 4.41 | 98 |
| 25 | 26.25 | -46.88 | 1.88 | 4.36 | 49 |
| 26 | -5.25 | 80.62 | 31.88 | 4.32 | 196 |
| 27 | 15.75 | -35.62 | -73.12 | 4.32 | 49 |
| 28 | 12.25 | 13.12 | -50.62 | 4.30 | 344 |
| 29 | 50.75 | 24.38 | -35.62 | 4.30 | 98 |
| 30 | -40.25 | 69.38 | 13.12 | 4.27 | 49 |
| 31 | 40.25 | -58.12 | -5.62 | 4.26 | 98 |
| 32 | -19.25 | 31.88 | -35.62 | 4.26 | 147 |
| 33 | 1.75 | 13.12 | -16.88 | 4.24 | 49 |
| 34 | 47.25 | 24.38 | -1.88 | 4.23 | 49 |
| 35 | 1.75 | 1.88 | 31.88 | 4.22 | 147 |
| 36 | 1.75 | -1.88 | -76.88 | 4.20 | 98 |
| 37 | -40.25 | -9.38 | -5.62 | 4.17 | 49 |
| 38 | 15.75 | 88.12 | 16.88 | 4.16 | 147 |
| 39 | -12.25 | 1.88 | -28.12 | 4.15 | 49 |
| 40 | 15.75 | -16.88 | 46.88 | 4.15 | 49 |
| 41 | 47.25 | 24.38 | 9.38 | 4.14 | 49 |
| 42 | -5.25 | -9.38 | 31.88 | 4.13 | 49 |
| 43 | 40.25 | 28.12 | -43.12 | 4.12 | 49 |
| 44 | 1.75 | 76.88 | 16.88 | 4.11 | 196 |
| 45 | 1.75 | -5.62 | -80.62 | 4.10 | 98 |
| 46 | 50.75 | 31.88 | -31.88 | 4.10 | 49 |
| 47 | 1.75 | -28.12 | -76.88 | 4.07 | 49 |
| 48 | -54.25 | 9.38 | -16.88 | 4.05 | 49 |
| 49 | 50.75 | 20.62 | -1.88 | 4.05 | 49 |
| 50 | -40.25 | 61.88 | 5.62 | 4.05 | 49 |
| 51 | -26.25 | -24.38 | 20.62 | 4.04 | 49 |
| 52 | -47.25 | -5.62 | -28.12 | 4.03 | 49 |
| 53 | -50.75 | -9.38 | -20.62 | 4.03 | 196 |
| 54 | 22.75 | -54.38 | -43.12 | 4.01 | 49 |
| 55 | -22.75 | -5.62 | -20.62 | 4.01 | 49 |
| 56 | -5.25 | -28.12 | -76.88 | 4.01 | 49 |
| 57 | 54.25 | 5.62 | 50.62 | 4.01 | 98 |
| 58 | 40.25 | 5.62 | 31.88 | 4.00 | 49 |
| 59 | -26.25 | -1.88 | -9.38 | 3.99 | 98 |
| 60 | 29.75 | 76.88 | 13.12 | 3.98 | 49 |
| 61 | 50.75 | 50.62 | 20.62 | 3.93 | 49 |
| 62 | -12.25 | 88.12 | 9.38 | 3.91 | 49 |
| 63 | -36.75 | -1.88 | -20.62 | 3.91 | 147 |
| 64 | -29.75 | -69.38 | 9.38 | 3.91 | 98 |
| 65 | 47.25 | -1.88 | 20.62 | 3.90 | 147 |
| 66 | 19.25 | -16.88 | -54.38 | 3.90 | 49 |
| 67 | 57.75 | -24.38 | 5.62 | 3.89 | 49 |
| 68 | -19.25 | 50.62 | 13.12 | 3.88 | 49 |
| 69 | 33.25 | 24.38 | -43.12 | 3.88 | 98 |
| 70 | 19.25 | 80.62 | 1.88 | 3.87 | 98 |
| 71 | 12.25 | 80.62 | 35.62 | 3.87 | 98 |
| 72 | -26.25 | 31.88 | -39.38 | 3.86 | 49 |
| 73 | -68.25 | -5.62 | 5.62 | 3.86 | 98 |
| 74 | -36.75 | 65.62 | 20.62 | 3.85 | 98 |
| 75 | -40.25 | -16.88 | -65.62 | 3.85 | 49 |
| 76 | 22.75 | -58.12 | -50.62 | 3.85 | 49 |
| 77 | -5.25 | 1.88 | -76.88 | 3.85 | 49 |
| 78 | 12.25 | -61.88 | 9.38 | 3.84 | 49 |
| 79 | -36.75 | 69.38 | 16.88 | 3.83 | 49 |
| 80 | 15.75 | 50.62 | -9.38 | 3.83 | 49 |
| 81 | -26.25 | -80.62 | -5.62 | 3.83 | 49 |
| 82 | 33.25 | -35.62 | -35.62 | 3.83 | 49 |
| 83 | 22.75 | -1.88 | 9.38 | 3.83 | 49 |
| 84 | -5.25 | 5.62 | -69.38 | 3.82 | 49 |
| 85 | 5.25 | 13.12 | 31.88 | 3.82 | 98 |
| 86 | -5.25 | -16.88 | -39.38 | 3.80 | 49 |
| 87 | 22.75 | 43.12 | -9.38 | 3.80 | 49 |
| 88 | -50.75 | -13.12 | 5.62 | 3.80 | 49 |
| 89 | -33.25 | -65.62 | -16.88 | 3.79 | 49 |
| 90 | 43.75 | -61.88 | 5.62 | 3.78 | 49 |
| 91 | 19.25 | -1.88 | -1.88 | 3.76 | 49 |
| 92 | 22.75 | -35.62 | -9.38 | 3.75 | 49 |
| 93 | 12.25 | 24.38 | -35.62 | 3.75 | 98 |
| 94 | 15.75 | 88.12 | 9.38 | 3.74 | 98 |
| 95 | -8.75 | 24.38 | -35.62 | 3.74 | 49 |
| 96 | -40.25 | 43.12 | -31.88 | 3.74 | 49 |
| 97 | -1.75 | 73.12 | 35.62 | 3.73 | 49 |
| 98 | 40.25 | -24.38 | -35.62 | 3.73 | 49 |
| 99 | 22.75 | -20.62 | -5.62 | 3.72 | 49 |
| 100 | -8.75 | 16.88 | -43.12 | 3.72 | 49 |
| 101 | 29.75 | -1.88 | 24.38 | 3.72 | 49 |
| 102 | 54.25 | 1.88 | 43.12 | 3.70 | 49 |
| 103 | 1.75 | 65.62 | 46.88 | 3.70 | 49 |
| 104 | -22.75 | -39.38 | -54.38 | 3.70 | 49 |
| 105 | 29.75 | 58.12 | -16.88 | 3.69 | 49 |
| 106 | 40.25 | -39.38 | 58.12 | 3.68 | 49 |
| 107 | 26.25 | -50.62 | -54.38 | 3.68 | 49 |
| 108 | -1.75 | -35.62 | -65.62 | 3.66 | 98 |
| 109 | 19.25 | -46.88 | -35.62 | 3.65 | 49 |
| 110 | -8.75 | 28.12 | 54.38 | 3.65 | 196 |
| 111 | 1.75 | 39.38 | -16.88 | 3.65 | 49 |
| 112 | 8.75 | -9.38 | -76.88 | 3.65 | 49 |
| 113 | 33.25 | -5.62 | -1.88 | 3.64 | 98 |
| 114 | -1.75 | 28.12 | -39.38 | 3.64 | 49 |
| 115 | 1.75 | -9.38 | 1.88 | 3.63 | 49 |
| 116 | 1.75 | 80.62 | 24.38 | 3.62 | 98 |
| 117 | -47.25 | 24.38 | 20.62 | 3.61 | 49 |
| 118 | 36.75 | 24.38 | -28.12 | 3.60 | 49 |
| 119 | 22.75 | -43.12 | -61.88 | 3.59 | 49 |
| 120 | -22.75 | 58.12 | -20.62 | 3.59 | 98 |
| 121 | 43.75 | -31.88 | -13.12 | 3.57 | 49 |
| 122 | -22.75 | 54.38 | -13.12 | 3.55 | 49 |
| 123 | -22.75 | 39.38 | 31.88 | 3.54 | 49 |
| 124 | -29.75 | 31.88 | -9.38 | 3.53 | 49 |
| 125 | 57.75 | 16.88 | 16.88 | 3.53 | 49 |
| 126 | 15.75 | -76.88 | -16.88 | 3.52 | 49 |
| 127 | 19.25 | 54.38 | 50.62 | 3.52 | 49 |
| 128 | 15.75 | 46.88 | -20.62 | 3.52 | 49 |
| 129 | 1.75 | -5.62 | -20.62 | 3.52 | 49 |
| 130 | 33.25 | -39.38 | 24.38 | 3.52 | 49 |
| 131 | -43.75 | -24.38 | 35.62 | 3.52 | 49 |
| 132 | -12.25 | 65.62 | -9.38 | 3.52 | 49 |
| 133 | -33.25 | 39.38 | 54.38 | 3.51 | 49 |
| 134 | -26.25 | 16.88 | 28.12 | 3.51 | 49 |
| 135 | -26.25 | 65.62 | 35.62 | 3.50 | 49 |
| 136 | 29.75 | -1.88 | 13.12 | 3.50 | 49 |
| 137 | 12.25 | 1.88 | -69.38 | 3.50 | 49 |
| 138 | 8.75 | 76.88 | 16.88 | 3.49 | 49 |
| 139 | -26.25 | -28.12 | 31.88 | 3.49 | 49 |
| 140 | 29.75 | -9.38 | 9.38 | 3.48 | 49 |
| 141 | 22.75 | 58.12 | -5.62 | 3.48 | 49 |
| 142 | -19.25 | -20.62 | -1.88 | 3.48 | 49 |
| 143 | -12.25 | -43.12 | -13.12 | 3.48 | 49 |
| 144 | 15.75 | 76.88 | 20.62 | 3.47 | 98 |
| 145 | -5.25 | -1.88 | -28.12 | 3.47 | 49 |
| 146 | -22.75 | 69.38 | 35.62 | 3.47 | 49 |
| 147 | -33.25 | 69.38 | 24.38 | 3.46 | 98 |
| 148 | -19.25 | -5.62 | 16.88 | 3.46 | 49 |
| 149 | -26.25 | 61.88 | -5.62 | 3.46 | 49 |
| 150 | 29.75 | -46.88 | -61.88 | 3.46 | 49 |
| 151 | -8.75 | 20.62 | 31.88 | 3.45 | 49 |
| 152 | 33.25 | 24.38 | 61.88 | 3.45 | 49 |
| 153 | 40.25 | -1.88 | 61.88 | 3.44 | 98 |
| 154 | -33.25 | 43.12 | -13.12 | 3.44 | 49 |
| 155 | 54.25 | 35.62 | 35.62 | 3.44 | 49 |
| 156 | 22.75 | -20.62 | 20.62 | 3.44 | 49 |
| 157 | -19.25 | 31.88 | -28.12 | 3.43 | 49 |
| 158 | -61.25 | -46.88 | 9.38 | 3.43 | 49 |
| 159 | 19.25 | 16.88 | -46.88 | 3.43 | 49 |
| 160 | -1.75 | -46.88 | -1.88 | 3.43 | 49 |
| 161 | 43.75 | -9.38 | -16.88 | 3.43 | 49 |
| 162 | 57.75 | -31.88 | 46.88 | 3.42 | 49 |
| 163 | -19.25 | -1.88 | -35.62 | 3.42 | 49 |
| 164 | 22.75 | 20.62 | 24.38 | 3.42 | 49 |
| 165 | -19.25 | 9.38 | -35.62 | 3.42 | 49 |
| 166 | -22.75 | 20.62 | -46.88 | 3.41 | 49 |
| 167 | 40.25 | -43.12 | -5.62 | 3.41 | 49 |
| 168 | -57.75 | -5.62 | -1.88 | 3.41 | 49 |
| 169 | -5.25 | 39.38 | 58.12 | 3.40 | 49 |
| 170 | -47.25 | -16.88 | -13.12 | 3.40 | 49 |
| 171 | -29.75 | -13.12 | -35.62 | 3.40 | 49 |
| 172 | 33.25 | -39.38 | -43.12 | 3.40 | 49 |
| 173 | 1.75 | 35.62 | -24.38 | 3.40 | 49 |
| 174 | 29.75 | 9.38 | 16.88 | 3.39 | 49 |
| 175 | 15.75 | -28.12 | -54.38 | 3.38 | 49 |
| 176 | 22.75 | -39.38 | 13.12 | 3.38 | 49 |
| 177 | 29.75 | -20.62 | -5.62 | 3.38 | 49 |
| 178 | 33.25 | -39.38 | -20.62 | 3.37 | 49 |
| 179 | -26.25 | 9.38 | 20.62 | 3.37 | 49 |
| 180 | -29.75 | -16.88 | -1.88 | 3.36 | 49 |
| 181 | 50.75 | -16.88 | -13.12 | 3.36 | 49 |
| 182 | -26.25 | 43.12 | -28.12 | 3.36 | 49 |
| 183 | 40.25 | 13.12 | -39.38 | 3.36 | 49 |
| 184 | 15.75 | -39.38 | 24.38 | 3.36 | 49 |
| 185 | -12.25 | 1.88 | 9.38 | 3.35 | 49 |
| 186 | 26.25 | -16.88 | -35.62 | 3.35 | 49 |
| 187 | 33.25 | 5.62 | 16.88 | 3.35 | 49 |
| 188 | -19.25 | -1.88 | -9.38 | 3.35 | 49 |
| 189 | 15.75 | -50.62 | 46.88 | 3.35 | 49 |
| 190 | -57.75 | -9.38 | -13.12 | 3.35 | 49 |
| 191 | 15.75 | 5.62 | 9.38 | 3.35 | 49 |
| 192 | 29.75 | -1.88 | 1.88 | 3.35 | 49 |
| 193 | 8.75 | 1.88 | 24.38 | 3.35 | 49 |
| 194 | -12.25 | -50.62 | -50.62 | 3.34 | 49 |
| 195 | -33.25 | 28.12 | -39.38 | 3.34 | 49 |
| 196 | 26.25 | 1.88 | 24.38 | 3.34 | 49 |
| 197 | -22.75 | -88.12 | -1.88 | 3.34 | 49 |
| 198 | 33.25 | -31.88 | -43.12 | 3.34 | 49 |
| 199 | -1.75 | -13.12 | 31.88 | 3.33 | 49 |
| 200 | 33.25 | -20.62 | 43.12 | 3.33 | 49 |
| 201 | -15.75 | -65.62 | 5.62 | 3.33 | 49 |
| 202 | 22.75 | -9.38 | -5.62 | 3.32 | 49 |
| 203 | 29.75 | -1.88 | 50.62 | 3.32 | 49 |
| 204 | 5.25 | -1.88 | 5.62 | 3.32 | 49 |
| 205 | -15.75 | 1.88 | 28.12 | 3.31 | 49 |
| 206 | -33.25 | 73.12 | 9.38 | 3.31 | 49 |
| 207 | 1.75 | -1.88 | -24.38 | 3.31 | 49 |
| 208 | 29.75 | -50.62 | -50.62 | 3.30 | 49 |
| 209 | 8.75 | 16.88 | -39.38 | 3.30 | 49 |
| 210 | -19.25 | -20.62 | -20.62 | 3.30 | 49 |
| 211 | 26.25 | 13.12 | -39.38 | 3.30 | 49 |
| 212 | 50.75 | -16.88 | 46.88 | 3.30 | 49 |
| 213 | 15.75 | 24.38 | 69.38 | 3.29 | 49 |
| 214 | 29.75 | 54.38 | -5.62 | 3.29 | 49 |
Built using Nilearn. Source code on GitHub. File bugs & feature requests here.
In a jupyter notebook, the report will be automatically inserted, as above. We have several other ways to access the report:
# report.save_as_html('report.html')
# report.open_in_browser()
9.3.9.7. Build the decoding pipeline¶
To define the decoding pipeline we use Decoder object, we choose :
a prediction model, here a Support Vector Classifier, with a linear kernel
the mask to use, here a ventral temporal ROI in the visual cortex
although it usually helps to decode better, z-maps time series don’t need to be rescaled to a 0 mean, variance of 1 so we use standardize=False.
we use univariate feature selection to reduce the dimension of the problem keeping only 5% of voxels which are most informative.
a cross-validation scheme, here we use LeaveOneGroupOut cross-validation on the sessions which corresponds to a leave-one-session-out
We fit directly this pipeline on the Niimgs outputs of the GLM, with corresponding conditions labels and session labels (for the cross validation).
from nilearn.decoding import Decoder
from sklearn.model_selection import LeaveOneGroupOut
decoder = Decoder(estimator='svc', mask=haxby_dataset.mask, standardize=False,
screening_percentile=5, cv=LeaveOneGroupOut())
decoder.fit(z_maps, conditions_label, groups=session_label)
# Return the corresponding mean prediction accuracy compared to chance
classification_accuracy = np.mean(list(decoder.cv_scores_.values()))
chance_level = 1. / len(np.unique(conditions))
print('Classification accuracy: {:.4f} / Chance level: {}'.format(
classification_accuracy, chance_level))
Out:
Classification accuracy: 0.6905 / Chance level: 0.125
Total running time of the script: ( 3 minutes 28.969 seconds)