Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
8.8.9. nilearn.regions.ReNA¶
- class
nilearn.regions.
ReNA
(mask_img, n_clusters=2, scaling=False, n_iter=10, threshold=1e-07, memory=None, memory_level=1, verbose=0)¶ Recursive Neighbor Agglomeration (ReNA): Recursively merges the pair of clusters according to 1-nearest neighbors criterion.
Parameters: mask_img: Niimg-like object used for masking the data.
n_clusters: int, optional (default 2)
The number of clusters to find.
scaling: bool, optional (default False)
If scaling is True, each cluster is scaled by the square root of its size, preserving the l2-norm of the image.
n_iter: int, optional (default 10)
Number of iterations of the recursive neighbor agglomeration
threshold: float in the open interval (0., 1.), optional (default 1e-7)
Threshold used to handle eccentricities.
memory: instance of joblib.Memory or string
Used to cache the masking process. By default, no caching is done. If a string is given, it is the path to the caching directory.
memory_level: integer, optional (default 1)
Rough estimator of the amount of memory used by caching. Higher value means more memory for caching.
verbose: int, optional (default 1)
Verbosity level.
References
- A. Hoyos-Idrobo, G. Varoquaux, J. Kahn and B. Thirion, “Recursive Nearest Agglomeration (ReNA): Fast Clustering for Approximation of Structured Signals,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 3, pp. 669-681, 1 March 2019. https://hal.archives-ouvertes.fr/hal-01366651/
Attributes
`labels_ `: ndarray, shape = [n_features] cluster labels for each feature. `n_clusters_`: int Number of clusters. `sizes_`: ndarray, shape = [n_features] It contains the size of each cluster. __init__
(mask_img, n_clusters=2, scaling=False, n_iter=10, threshold=1e-07, memory=None, memory_level=1, verbose=0)¶Initialize self. See help(type(self)) for accurate signature.
fit
(X, y=None)¶Compute clustering of the data.
Parameters: X: ndarray, shape = [n_samples, n_features]
Training data.
y: Ignored
Returns: self: ReNA object
fit_predict
(X, y=None)¶Perform clustering on X and returns cluster labels.
Parameters: X : array-like of shape (n_samples, n_features)
Input data.
y : Ignored
Not used, present for API consistency by convention.
Returns: labels : ndarray of shape (n_samples,)
Cluster labels.
fit_transform
(X, y=None, **fit_params)¶Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: X : {array-like, sparse matrix, dataframe} of shape (n_samples, n_features)
Input samples.
y : ndarray of shape (n_samples,), default=None
Target values (None for unsupervised transformations).
**fit_params : dict
Additional fit parameters.
Returns: X_new : ndarray array of shape (n_samples, n_features_new)
Transformed array.
get_params
(deep=True)¶Get parameters for this estimator.
Parameters: deep : bool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
inverse_transform
(X_red)¶Send the reduced 2D data matrix back to the original feature space (voxels).
Parameters: X_red: ndarray , shape = [n_samples, n_clusters]
Data reduced with agglomerated signal for each cluster
Returns: X_inv: ndarray, shape = [n_samples, n_features]
Data reduced expanded to the original feature space
set_params
(**params)¶Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Parameters: **params : dict
Estimator parameters.
Returns: self : object
Estimator instance.
transform
(X, y=None)¶Apply clustering, reduce the dimensionality of the data.
Parameters: X: ndarray, shape = [n_samples, n_features]
Data to transform with the fitted clustering.
Returns: X_red: ndarray, shape = [n_samples, n_clusters]
Data reduced with agglomerated signal for each cluster