Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
8.10.9. nilearn.plotting.plot_roi¶
nilearn.plotting.
plot_roi
(roi_img, bg_img=<MNI152Template>, cut_coords=None, output_file=None, display_mode='ortho', figure=None, axes=None, title=None, annotate=True, draw_cross=True, black_bg='auto', threshold=0.5, alpha=0.7, cmap=<matplotlib.colors.LinearSegmentedColormap object>, dim='auto', vmin=None, vmax=None, resampling_interpolation='nearest', view_type='continuous', linewidths=2.5, **kwargs)¶Plot cuts of an ROI/mask image (by default 3 cuts: Frontal, Axial, and Lateral)
Parameters: roi_img : Niimg-like object
See http://nilearn.github.io/manipulating_images/input_output.html The ROI/mask image, it could be binary mask or an atlas or ROIs with integer values.
bg_img : Niimg-like object
See http://nilearn.github.io/manipulating_images/input_output.html The background image that the ROI/mask will be plotted on top of. If nothing is specified, the MNI152 template will be used. To turn off background image, just pass “bg_img=None”.
cut_coords : None, or a tuple of floats
The MNI coordinates of the point where the cut is performed, in MNI coordinates and order. If display_mode is ‘ortho’ or ‘tiled’, this should be a 3-tuple: (x, y, z) For display_mode == ‘x’, ‘y’, or ‘z’, then these are the coordinates of each cut in the corresponding direction. If None is given, the cuts is calculated automaticaly.
output_file : string, or None, optional
The name of an image file to export the plot to. Valid extensions are .png, .pdf, .svg. If output_file is not None, the plot is saved to a file, and the display is closed.
display_mode : {‘ortho’, ‘tiled’, ‘x’, ‘y’, ‘z’, ‘yx’, ‘xz’, ‘yz’}
Choose the direction of the cuts: ‘x’ - sagittal, ‘y’ - coronal, ‘z’ - axial, ‘ortho’ - three cuts are performed in orthogonal directions, ‘tiled’ - three cuts are performed and arranged in a 2x2 grid.
figure : integer or matplotlib figure, optional
Matplotlib figure used or its number. If None is given, a new figure is created.
axes : matplotlib axes or 4 tuple of float: (xmin, ymin, width, height), optional
The axes, or the coordinates, in matplotlib figure space, of the axes used to display the plot. If None, the complete figure is used.
title : string, optional
The title displayed on the figure.
annotate : boolean, optional
If annotate is True, positions and left/right annotation are added to the plot.
draw_cross : boolean, optional
If draw_cross is True, a cross is drawn on the plot to indicate the cut plosition.
black_bg : boolean, optional
If True, the background of the image is set to be black. If you wish to save figures with a black background, you will need to pass “facecolor=’k’, edgecolor=’k’” to matplotlib.pyplot.savefig.
threshold : None, ‘auto’, or a number (0.5 by default), optional
If None is given, the image is not thresholded. If a number is given, it is used to threshold the image: values below the threshold (in absolute value) are plotted as transparent. If auto is given, the threshold is determined magically by analysis of the image.
alpha : float between 0 and 1, default=0.7
Alpha sets the transparency of the color inside the filled contours.
cmap : matplotlib colormap, optional
The colormap for the atlas maps
dim : float, ‘auto’ (by default), optional
Dimming factor applied to background image. By default, automatic heuristics are applied based upon the background image intensity. Accepted float values, where a typical span is between -2 and 2 (-2 = increase contrast; 2 = decrease contrast), but larger values can be used for a more pronounced effect. 0 means no dimming.
vmin : float
Lower bound for plotting, passed to matplotlib.pyplot.imshow
vmax : float
Upper bound for plotting, passed to matplotlib.pyplot.imshow
resampling_interpolation : str
Interpolation to use when resampling the image to the destination space. Can be “continuous” to use 3rd-order spline interpolation, or “nearest” (default) to use nearest-neighbor mapping. “nearest” is faster but can be noisier in some cases.
view_type : {‘continuous’, ‘contours’}, optional
By default view_type == ‘continuous’, rois are shown as continuous colors. If view_type == ‘contours’, maps are shown as contours. For this type, label denoted as 0 is considered as background and not shown.
linewidths : float, default=2.5
This option can be used to set the boundary thickness of the contours. Only reflects when view_type=’contours’.
See also
nilearn.plotting.plot_prob_atlas
- To simply plot probabilistic atlases (4D images)
Notes
A small threshold is applied by default to eliminate numerical background noise.
For visualization, non-finite values found in passed ‘roi_img’ or ‘bg_img’ are set to zero.