Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
8.10.8. nilearn.plotting.plot_matrix¶
nilearn.plotting.
plot_matrix
(mat, title=None, labels=None, figure=None, axes=None, colorbar=True, cmap=<matplotlib.colors.LinearSegmentedColormap object>, tri='full', auto_fit=True, grid=False, reorder=False, **kwargs)¶Plot the given matrix.
Parameters: mat : 2-D numpy array
Matrix to be plotted.
title : string or None, optional
A text to add in the upper left corner.
labels : list, ndarray of strings, empty list, False, or None, optional
The label of each row and column. Needs to be the same length as rows/columns of mat. If False, None, or an empty list, no labels are plotted.
figure : figure instance, figsize tuple, or None
Sets the figure used. This argument can be either an existing figure, or a pair (width, height) that gives the size of a newly-created figure. Specifying both axes and figure is not allowed.
axes : None or Axes, optional
Axes instance to be plotted on. Creates a new one if None. Specifying both axes and figure is not allowed.
colorbar : boolean, optional
If True, an integrated colorbar is added.
cmap : matplotlib colormap, optional
The colormap for the matrix. Default is RdBu_r.
tri : {‘lower’, ‘diag’, ‘full’}, optional
Which triangular part of the matrix to plot: ‘lower’ is the lower part, ‘diag’ is the lower including diagonal, and ‘full’ is the full matrix.
auto_fit : boolean, optional
If auto_fit is True, the axes are dimensioned to give room for the labels. This assumes that the labels are resting against the bottom and left edges of the figure.
grid : color or False, optional
If not False, a grid is plotted to separate rows and columns using the given color.
reorder : boolean or {‘single’, ‘complete’, ‘average’}, optional
If not False, reorders the matrix into blocks of clusters. Accepted linkage options for the clustering are ‘single’, ‘complete’, and ‘average’. True defaults to average linkage.
Note
This option is only available with SciPy >= 1.0.0.
New in version 0.4.1.
kwargs : extra keyword arguments
Extra keyword arguments are sent to pylab.imshow
Returns: display : instance of matplotlib
Axes image.