Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
8.5.7. nilearn.image.high_variance_confounds¶
nilearn.image.
high_variance_confounds
(imgs, n_confounds=5, percentile=2.0, detrend=True, mask_img=None)¶Return confounds signals extracted from input signals with highest variance.
Parameters: imgs : Niimg-like object
mask_img : Niimg-like object
If not provided, all voxels are used. If provided, confounds are extracted from voxels inside the mask. See http://nilearn.github.io/manipulating_images/input_output.html.
n_confounds :
int
Number of confounds to return.
percentile :
float
Highest-variance signals percentile to keep before computing the singular value decomposition, 0. <= percentile <= 100. mask_img.sum() * percentile / 100 must be greater than n_confounds.
detrend :
bool
If True, detrend signals before processing.
Returns: Highest variance confounds. Shape: (number_of_scans, n_confounds).
Notes
This method is related to what has been published in the literature as ‘CompCor’ (Behzadi NeuroImage 2007).
The implemented algorithm does the following:
- Computes the sum of squares for each signal (no mean removal).
- Keeps a given percentile of signals with highest variance (percentile).
- Computes an SVD of the extracted signals.
- Returns a given number (n_confounds) of signals from the SVD with highest singular values.