Note

This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

8.12.15.10. nilearn.glm.first_level.run_glm

nilearn.glm.first_level.run_glm(Y, X, noise_model='ar1', bins=100, n_jobs=1, verbose=0)

GLM fit for an fMRI data matrix

Parameters:

Y : array of shape (n_time_points, n_voxels)

The fMRI data.

X : array of shape (n_time_points, n_regressors)

The design matrix.

noise_model : {‘ar1’, ‘ols’}, optional

The temporal variance model. Defaults to ‘ar1’.

bins : int, optional

Maximum number of discrete bins for the AR(1) coef histogram.

n_jobs : int, optional

The number of CPUs to use to do the computation. -1 means ‘all CPUs’.

verbose : int, optional

The verbosity level. Defaut is 0

Returns:

labels : array of shape (n_voxels,),

A map of values on voxels used to identify the corresponding model.

results : dict,

Keys correspond to the different labels values values are RegressionResults instances corresponding to the voxels.