Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
8.12.8. nilearn.glm.SimpleRegressionResults¶
- class
nilearn.glm.
SimpleRegressionResults
(results)¶ This class contains only information of the model fit necessary for contast computation.
Its intended to save memory when details of the model are unnecessary.
__init__
(results)¶See LikelihoodModelResults constructor.
The only difference is that the whitened Y and residual values are stored for a regression model.
Fcontrast
(matrix, dispersion=None, invcov=None)¶Compute an Fcontrast for a contrast matrix matrix.
Here, matrix M is assumed to be non-singular. More precisely
is assumed invertible. Here, is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full.
See the contrast module to see how to specify contrasts. In particular, the matrices from these contrasts will always be non-singular in the sense above.
Parameters: matrix : 1D array-like
contrast matrix
dispersion : None or float, optional
If None, use
self.dispersion
invcov : None or array, optional
Known inverse of variance covariance matrix. If None, calculate this matrix.
Returns: f_res :
FContrastResults
instancewith attributes F, df_den, df_num
Notes
For F contrasts, we now specify an effect and covariance
Tcontrast
(matrix, store=('t', 'effect', 'sd'), dispersion=None)¶Compute a Tcontrast for a row vector matrix
To get the t-statistic for a single column, use the ‘t’ method.
Parameters: matrix : 1D array-like
contrast matrix
store : sequence, optional
components of t to store in results output object. Defaults to all components (‘t’, ‘effect’, ‘sd’).
dispersion : None or float, optional
Returns: res :
TContrastResults
object
conf_int
(alpha=0.05, cols=None, dispersion=None)¶The confidence interval of the specified theta estimates.
Parameters: alpha : float, optional
The alpha level for the confidence interval. ie., alpha = .05 returns a 95% confidence interval.
cols : tuple, optional
cols specifies which confidence intervals to return
dispersion : None or scalar
scale factor for the variance / covariance (see class docstring and
vcov
method docstring)Returns: cis : ndarray
cis is shape
(len(cols), 2)
where each row contains [lower, upper] for the given entry in colsNotes
Confidence intervals are two-tailed.
- tails : string, optional
- Possible values: ‘two’ | ‘upper’ | ‘lower’
Examples
>>> from numpy.random import standard_normal as stan >>> from nilearn.glm import OLSModel >>> x = np.hstack((stan((30,1)),stan((30,1)),stan((30,1)))) >>> beta=np.array([3.25, 1.5, 7.0]) >>> y = np.dot(x,beta) + stan((30)) >>> model = OLSModel(x).fit(y) >>> confidence_intervals = model.conf_int(cols=(1,2))
df_resid
()¶
logL
(Y)¶The maximized log-likelihood
norm_resid
(Y)¶
normalized_residuals
(Y)¶Residuals, normalized to have unit length.
Notes
Is this supposed to return “stanardized residuals,” residuals standardized to have mean zero and approximately unit variance?
d_i = e_i / sqrt(MS_E)
Where MS_E = SSE / (n - k)
- See: Montgomery and Peck 3.2.1 p. 68
- Davidson and MacKinnon 15.2 p 662
predicted
()¶Return linear predictor values from a design matrix.
resid
(Y)¶
residuals
(Y)¶Residuals from the fit.
t
(column=None)¶Return the (Wald) t-statistic for a given parameter estimate.
Use Tcontrast for more complicated (Wald) t-statistics.
vcov
(matrix=None, column=None, dispersion=None, other=None)¶Variance/covariance matrix of linear contrast
Parameters: matrix: (dim, self.theta.shape[0]) array, optional
numerical contrast specification, where
dim
refers to the ‘dimension’ of the contrast i.e. 1 for t contrasts, 1 or more for F contrasts.column: int, optional
alternative way of specifying contrasts (column index)
dispersion: float or (n_voxels,) array, optional
value(s) for the dispersion parameters
other: (dim, self.theta.shape[0]) array, optional
alternative contrast specification (?)
Returns: cov: (dim, dim) or (n_voxels, dim, dim) array
the estimated covariance matrix/matrices
Returns the variance/covariance matrix of a linear contrast of the
estimates of theta, multiplied by dispersion which will often be an
estimate of dispersion, like, sigma^2.
The covariance of interest is either specified as a (set of) column(s)
or a matrix.