Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
8.12.6. nilearn.glm.LikelihoodModelResults¶
- class
nilearn.glm.
LikelihoodModelResults
(theta, Y, model, cov=None, dispersion=1.0, nuisance=None, rank=None)¶ Class to contain results from likelihood models
__init__
(theta, Y, model, cov=None, dispersion=1.0, nuisance=None, rank=None)¶Set up results structure
Parameters: theta : ndarray
parameter estimates from estimated model
Y : ndarray
data
model :
LikelihoodModel
instancemodel used to generate fit
cov : None or ndarray, optional
covariance of thetas
dispersion : scalar, optional
multiplicative factor in front of cov
nuisance : None of ndarray
parameter estimates needed to compute logL
rank : None or scalar
rank of the model. If rank is not None, it is used for df_model instead of the usual counting of parameters.
Notes
The covariance of thetas is given by:
dispersion * covFor (some subset of models) dispersion will typically be the mean square error from the estimated model (sigma^2)
This class is experimental. It may change in any future release of Nilearn.
Fcontrast
(matrix, dispersion=None, invcov=None)¶Compute an Fcontrast for a contrast matrix matrix.
Here, matrix M is assumed to be non-singular. More precisely
is assumed invertible. Here, is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full.
See the contrast module to see how to specify contrasts. In particular, the matrices from these contrasts will always be non-singular in the sense above.
Parameters: matrix : 1D array-like
contrast matrix
dispersion : None or float, optional
If None, use
self.dispersion
invcov : None or array, optional
Known inverse of variance covariance matrix. If None, calculate this matrix.
Returns: f_res :
FContrastResults
instancewith attributes F, df_den, df_num
Notes
For F contrasts, we now specify an effect and covariance
Tcontrast
(matrix, store=('t', 'effect', 'sd'), dispersion=None)¶Compute a Tcontrast for a row vector matrix
To get the t-statistic for a single column, use the ‘t’ method.
Parameters: matrix : 1D array-like
contrast matrix
store : sequence, optional
components of t to store in results output object. Defaults to all components (‘t’, ‘effect’, ‘sd’).
dispersion : None or float, optional
Returns: res :
TContrastResults
object
conf_int
(alpha=0.05, cols=None, dispersion=None)¶The confidence interval of the specified theta estimates.
Parameters: alpha : float, optional
The alpha level for the confidence interval. ie., alpha = .05 returns a 95% confidence interval.
cols : tuple, optional
cols specifies which confidence intervals to return
dispersion : None or scalar
scale factor for the variance / covariance (see class docstring and
vcov
method docstring)Returns: cis : ndarray
cis is shape
(len(cols), 2)
where each row contains [lower, upper] for the given entry in colsNotes
Confidence intervals are two-tailed.
- tails : string, optional
- Possible values: ‘two’ | ‘upper’ | ‘lower’
Examples
>>> from numpy.random import standard_normal as stan >>> from nilearn.glm import OLSModel >>> x = np.hstack((stan((30,1)),stan((30,1)),stan((30,1)))) >>> beta=np.array([3.25, 1.5, 7.0]) >>> y = np.dot(x,beta) + stan((30)) >>> model = OLSModel(x).fit(y) >>> confidence_intervals = model.conf_int(cols=(1,2))
df_resid
()¶
logL
()¶The maximized log-likelihood
t
(column=None)¶Return the (Wald) t-statistic for a given parameter estimate.
Use Tcontrast for more complicated (Wald) t-statistics.
vcov
(matrix=None, column=None, dispersion=None, other=None)¶Variance/covariance matrix of linear contrast
Parameters: matrix: (dim, self.theta.shape[0]) array, optional
numerical contrast specification, where
dim
refers to the ‘dimension’ of the contrast i.e. 1 for t contrasts, 1 or more for F contrasts.column: int, optional
alternative way of specifying contrasts (column index)
dispersion: float or (n_voxels,) array, optional
value(s) for the dispersion parameters
other: (dim, self.theta.shape[0]) array, optional
alternative contrast specification (?)
Returns: cov: (dim, dim) or (n_voxels, dim, dim) array
the estimated covariance matrix/matrices
Returns the variance/covariance matrix of a linear contrast of the
estimates of theta, multiplied by dispersion which will often be an
estimate of dispersion, like, sigma^2.
The covariance of interest is either specified as a (set of) column(s)
or a matrix.