Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
8.12.1. nilearn.glm.Contrast¶
- class
nilearn.glm.
Contrast
(effect, variance, dim=None, dof=10000000000.0, contrast_type='t', tiny=1e-50, dofmax=10000000000.0)¶ The contrast class handles the estimation of statistical contrasts on a given model: student (t) or Fisher (F). The important feature is that it supports addition, thus opening the possibility of fixed-effects models.
The current implementation is meant to be simple, and could be enhanced in the future on the computational side (high-dimensional F constrasts may lead to memory breakage).
__init__
(effect, variance, dim=None, dof=10000000000.0, contrast_type='t', tiny=1e-50, dofmax=10000000000.0)¶Parameters: effect : array of shape (contrast_dim, n_voxels)
the effects related to the contrast
variance : array of shape (n_voxels)
the associated variance estimate
dim: int or None,
the dimension of the contrast
dof : scalar
the degrees of freedom of the residuals
contrast_type: {‘t’, ‘F’}
specification of the contrast type
effect_size
()¶Make access to summary statistics more straightforward when computing contrasts
effect_variance
()¶Make access to summary statistics more straightforward when computing contrasts
p_value
(baseline=0.0)¶Return a parametric estimate of the p-value associated with the null hypothesis: (H0) ‘contrast equals baseline’
Parameters: baseline : float, optional
baseline value for the test statistic
Returns: p_values : 1-d array, shape=(n_voxels,)
p-values, one per voxel
stat
(baseline=0.0)¶Return the decision statistic associated with the test of the null hypothesis: (H0) ‘contrast equals baseline’
Parameters: baseline : float, optional
Baseline value for the test statistic
Returns: stat: 1-d array, shape=(n_voxels,)
statistical values, one per voxel
z_score
(baseline=0.0)¶Return a parametric estimation of the z-score associated with the null hypothesis: (H0) ‘contrast equals baseline’
Parameters: baseline: float, optional,
Baseline value for the test statistic
Returns: z_score: 1-d array, shape=(n_voxels,)
statistical values, one per voxel