.. _v0.7.0: 0.7.0 ===== **Released November 2020** HIGHLIGHTS ---------- - Nilearn now includes the functionality of `Nistats `_ as :mod:`nilearn.glm`. This module is experimental, hence subject to change in any future release. :ref:`Here's a guide to replacing Nistats imports to work in Nilearn. ` - New decoder object :class:`nilearn.decoding.Decoder` (for classification) and :class:`nilearn.decoding.DecoderRegressor` (for regression) implement a model selection scheme that averages the best models within a cross validation loop. - New FREM object :class:`nilearn.decoding.FREMClassifier` (for classification) and :class:`nilearn.decoding.FREMRegressor` (for regression) extend the decoder object with one fast clustering step at the beginning and aggregates a high number of estimators trained on various splits of the training set. - New plotting functions: * :func:`nilearn.plotting.plot_event` to visualize events file. * :func:`nilearn.plotting.plot_roi` can now plot ROIs in contours with `view_type` argument. * :func:`nilearn.plotting.plot_carpet` generates a "carpet plot" (also known as a "Power plot" or a "grayplot") * :func:`nilearn.plotting.plot_img_on_surf` generates multiple views of :func:`nilearn.plotting.plot_surf_stat_map` in a single figure. * :func:`nilearn.plotting.plot_markers` shows network nodes (markers) on a glass brain template * :func:`nilearn.plotting.plot_surf_contours` plots the contours of regions of interest on the surface .. warning:: Minimum required version of Joblib is now 0.12. NEW --- - Nilearn now includes the functionality of `Nistats `_. :ref:`Here's a guide to replacing Nistats imports to work in Nilearn. ` - New decoder object :class:`nilearn.decoding.Decoder` (for classification) and :class:`nilearn.decoding.DecoderRegressor` (for regression) implement a model selection scheme that averages the best models within a cross validation loop. The resulting average model is the one used as a classifier or a regressor. These two objects also leverage the `NiftiMaskers` to provide a direct interface with the Nifti files on disk. - New FREM object :class:`nilearn.decoding.FREMClassifier` (for classification) and :class:`nilearn.decoding.FREMRegressor` (for regression) extend the decoder object pipeline with one fast clustering step at the beginning (yielding an implicit spatial regularization) and aggregates a high number of estimators trained on various splits of the training set. This returns a state-of-the-art decoding pipeline at a low computational cost. These two objects also leverage the `NiftiMaskers` to provide a direct interface with the Nifti files on disk. - Plot events file Use :func:`nilearn.plotting.plot_event` to visualize events file. The function accepts the BIDS events file read using `pandas` utilities. - Plotting function :func:`nilearn.plotting.plot_roi` can now plot ROIs in contours with `view_type` argument. - New plotting function :func:`nilearn.plotting.plot_carpet` generates a "carpet plot" (also known as a "Power plot" or a "grayplot"), for visualizing global patterns in 4D functional data over time. - New plotting function :func:`nilearn.plotting.plot_img_on_surf` generates multiple views of :func:`nilearn.plotting.plot_surf_stat_map` in a single figure. - :func:`nilearn.plotting.plot_markers` shows network nodes (markers) on a glass brain template and color code them according to provided nodal measure (i.e. connection strength). This function will replace :func:`nilearn.plotting.plot_connectome_strength`. - New plotting function :func:`nilearn.plotting.plot_surf_contours` plots the contours of regions of interest on the surface, optionally overlayed on top of a statistical map. - The position annotation on the plot methods now implements the `decimals` option to enable annotation of a slice coordinate position with the float. - New example in :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_searchlight_surface.py` to demo how to do cortical surface-based searchlight decoding with Nilearn. - confounds or additional regressors for design matrix can be specified as numpy arrays or pandas DataFrames interchangeably - The decomposition estimators will now accept argument `per_component` with `score` method to explain the variance for each component. Fixes ----- - :class:`nilearn.input_data.NiftiLabelsMasker` no longer ignores its `mask_img` - :func:`nilearn.masking.compute_brain_mask` has replaced nilearn.masking.compute_gray_matter_mask. Features remained the same but some corrections regarding its description were made in the docstring. - the default background (MNI template) in plotting functions now has the correct orientation; before left and right were inverted. - :func:`nilearn.mass_univariate.permuted_ols` no longer returns transposed t-statistic arrays when no permutations are performed. - Fix decomposition estimators returning explained variance score as 0. based on all components i.e., when per_component=False. - Fix readme file of the Destrieux 2009 atlas. Changes ------- - :func:`nilearn.datasets.fetch_cobre` has been deprecated and will be removed in release 0.9 . - :func:`nilearn.plotting.plot_connectome_strength` has been deprecated and will be removed in release 0.9 . - :class:`nilearn.connectome.ConnectivityMeasure` can now remove confounds in its transform step. - :func:`nilearn.surface.vol_to_surf` can now sample between two nested surfaces (eg white matter and pial surfaces) at specific cortical depths - :func:`nilearn.datasets.fetch_surf_fsaverage` now also downloads white matter surfaces. .. _v0.6.2: 0.6.2 ====== ENHANCEMENTS ------------ - Generated documentation now includes Binder links to launch examples interactively in the browser - :class:`nilearn.input_data.NiftiSpheresMasker` now has an inverse transform, projecting spheres to the corresponding mask_img. Fixes ----- - More robust matplotlib backend selection - Typo in example fixed Changes ------- - Atlas `nilearn.datasets.fetch_nyu_rest` has been deprecated and wil be removed in Nilearn 0.8.0 . Contributors ------------ The following people contributed to this release:: Elizabeth DuPre Franz Liem Gael Varoquaux Jon Haitz Legarreta Gorroño Joshua Teves Kshitij Chawla (kchawla-pi) Zvi Baratz Simon R. Steinkamp .. _v0.6.1: 0.6.1 ===== ENHANCEMENTS ------------ - html pages use the user-provided plot title, if any, as their title Fixes ----- - Fetchers for developmental_fmri and localizer datasets resolve URLs correctly. Contributors ------------ The following people contributed to this release:: Elizabeth DuPre Jerome Dockes Kshitij Chawla (kchawla-pi) 0.6.0 ===== **Released December 2019** HIGHLIGHTS ---------- .. warning:: | **Python2 and 3.4 are no longer supported. We recommend upgrading to Python 3.6 minimum.** | | **Support for Python3.5 wil be removed in the 0.7.x release.** | Users with a Python3.5 environment will be warned at their first Nilearn import. | | **joblib is now a dependency** | | **Minimum supported versions of packages have been bumped up.** | - Matplotlib -- v2.0 | - Scikit-learn -- v0.19 | - Scipy -- v0.19 NEW --- - A new method for :class:`nilearn.input_data.NiftiMasker` instances for generating reports viewable in a web browser, Jupyter Notebook, or VSCode. - A new function :func:`nilearn.image.get_data` to replace the deprecated nibabel method `Nifti1Image.get_data`. Now use `nilearn.image.get_data(img)` rather than `img.get_data()`. This is because Nibabel is removing the `get_data` method. You may also consider using the Nibabel `Nifti1Image.get_fdata`, which returns the data cast to floating-point. See https://github.com/nipy/nibabel/wiki/BIAP8 . As a benefit, the `get_data` function works on niimg-like objects such as filenames (see http://nilearn.github.io/manipulating_images/input_output.html ). - Parcellation method ReNA: Fast agglomerative clustering based on recursive nearest neighbor grouping. Yields very fast & accurate models, without creation of giant clusters. :class:`nilearn.regions.ReNA` - Plot connectome strength Use :func:`nilearn.plotting.plot_connectome_strength` to plot the strength of a connectome on a glass brain. Strength is absolute sum of the edges at a node. - Optimization to image resampling - New brain development fMRI dataset fetcher :func:`nilearn.datasets.fetch_development_fmri` can be used to download movie-watching data in children and adults. A light-weight dataset implemented for teaching and usage in the examples. All the connectivity examples are changed from ADHD to brain development fmri dataset. ENHANCEMENTS ------------ - :func:`nilearn.plotting.view_img_on_surf`, :func:`nilearn.plotting.view_surf` and :func:`nilearn.plotting.view_connectome` can display a title, and allow disabling the colorbar, and setting its height and the fontsize of its ticklabels. - Rework of the standardize-options of :func:`nilearn.signal.clean` and the various Maskers in `nilearn.input_data`. You can now set `standardize` to `zscore` or `psc`. `psc` stands for `Percent Signal Change`, which can be a meaningful metric for BOLD. - Class :class:`nilearn.input_data.NiftiLabelsMasker` now accepts an optional `strategy` parameter which allows it to change the function used to reduce values within each labelled ROI. Available functions include mean, median, minimum, maximum, standard_deviation and variance. This change is also introduced in :func:`nilearn.regions.img_to_signals_labels`. - :func:`nilearn.plotting.view_surf` now accepts surface data provided as a file path. CHANGES ------- - :func:`nilearn.plotting.plot_img` now has explicit keyword arguments `bg_img`, `vmin` and `vmax` to control the background image and the bounds of the colormap. These arguments were already accepted in `kwargs` but not documented before. FIXES ----- - :class:`nilearn.input_data.NiftiLabelsMasker` no longer truncates region means to their integral part when input images are of integer type. - The arg `version='det'` in :func:`nilearn.datasets.fetch_atlas_pauli_2017` now works as expected. - `pip install nilearn` now installs the necessary dependencies. **Lots of other fixes in documentation and examples.** More detailed change list follows: 0.6.0rc NEW --- .. warning:: - :func:`nilearn.plotting.view_connectome` no longer accepts old parameter names. Instead of `coords`, `threshold`, `cmap`, and `marker_size`, use `node_coords`, `edge_threshold`, `edge_cmap`, `node_size` respectively. - :func:`nilearn.plotting.view_markers` no longer accepts old parameter names. Instead of `coord` and `color`, use `marker_coords` and `marker_color` respectively. - **Support for Python3.5 wil be removed in the 0.7.x release.** Users with a Python3.5 environment will be warned at their first Nilearn import. Changes ------- - Add a warning to :class:`nilearn.regions.Parcellations` if the generated number of parcels does not match the requested number of parcels. - Class :class:`nilearn.input_data.NiftiLabelsMasker` now accepts an optional `strategy` parameter which allows it to change the function used to reduce values within each labelled ROI. Available functions include mean, median, minimum, maximum, standard_deviation and variance. This change is also introduced in :func:`nilearn.regions.img_to_signals_labels`. Fixes ----- - :class:`nilearn.input_data.NiftiLabelsMasker` no longer truncates region means to their integral part when input images are of integer type. - :func: `nilearn.image.smooth_image` no longer fails if `fwhm` is a `numpy.ndarray`. - `pip install nilearn` now installs the necessary dependencies. - :func:`nilearn.image.new_img_like` no longer attempts to copy non-iterable headers. (PR #2212) - Nilearn no longer raises ImportError for nose when Matplotlib is not installed. - The arg `version='det'` in :func:`nilearn.datasets.fetch_atlas_pauli_2017` now works as expected. - :func:`nilearn.input_data.NiftiLabelsMasker.inverse_transform` now works without the need to call transform first. Contributors ------------ The following people contributed to this release (in alphabetical order):: Chris Markiewicz Dan Gale Daniel Gomez Derek Pisner Elizabeth DuPre Eric Larson Gael Varoquaux Jerome Dockes JohannesWiesner Kshitij Chawla (kchawla-pi) Paula Sanz-Leon ltetrel ryanhammonds 0.6.0b0 ======= **Released November 2019** .. warning:: | **Python2 and 3.4 are no longer supported. Pip will raise an error in these environments.** | **Minimum supported version of Python is now 3.5 .** | **We recommend upgrading to Python 3.6 .** NEW --- - A new function :func:`nilearn.image.get_data` to replace the deprecated nibabel method `Nifti1Image.get_data`. Now use `nilearn.image.get_data(img)` rather than `img.get_data()`. This is because Nibabel is removing the `get_data` method. You may also consider using the Nibabel `Nifti1Image.get_fdata`, which returns the data cast to floating-point. See https://github.com/nipy/nibabel/wiki/BIAP8 . As a benefit, the `get_data` function works on niimg-like objects such as filenames (see http://nilearn.github.io/manipulating_images/input_output.html ). Changes ------- - All functions and examples now use `nilearn.image.get_data` rather than the deprecated method `nibabel.Nifti1Image.get_data`. - :func:`nilearn.datasets.fetch_neurovault` now does not filter out images that have their metadata field `is_valid` cleared by default. - Users can now specify fetching data for adults, children, or both from :func:`nilearn.datasets.fetch_development_fmri` . Fixes ----- - :func:`nilearn.plotting.plot_connectome` now correctly displays marker size on 'l' and 'r' orientations, if an array or a list is passed to the function. Contributors ------------ The following people contributed to this release (in alphabetical order):: Jake Vogel Jerome Dockes Kshitij Chawla (kchawla-pi) Roberto Guidotti 0.6.0a0 ======= **Released October 2019** NEW --- .. warning:: | **Python2 and 3.4 are no longer supported. We recommend upgrading to Python 3.6 minimum.** | | **Minimum supported versions of packages have been bumped up.** | - Matplotlib -- v2.0 | - Scikit-learn -- v0.19 | - Scipy -- v0.19 - A new method for :class:`nilearn.input_data.NiftiMasker` instances for generating reports viewable in a web browser, Jupyter Notebook, or VSCode. - joblib is now a dependency - Parcellation method ReNA: Fast agglomerative clustering based on recursive nearest neighbor grouping. Yields very fast & accurate models, without creation of giant clusters. :class:`nilearn.regions.ReNA` - Plot connectome strength Use :func:`nilearn.plotting.plot_connectome_strength` to plot the strength of a connectome on a glass brain. Strength is absolute sum of the edges at a node. - Optimization to image resampling :func:`nilearn.image.resample_img` has been optimized to pad rather than resample images in the special case when there is only a translation between two spaces. This is a common case in :class:`nilearn.input_data.NiftiMasker` when using the `mask_strategy="template"` option for brains in MNI space. - New brain development fMRI dataset fetcher :func:`nilearn.datasets.fetch_development_fmri` can be used to download movie-watching data in children and adults; a light-weight dataset implemented for teaching and usage in the examples. - New example in `examples/05_advanced/plot_age_group_prediction_cross_val.py` to compare methods for classifying subjects into age groups based on functional connectivity. Similar example in `examples/03_connectivity/plot_group_level_connectivity.py` simplified. - Merged `examples/03_connectivity/plot_adhd_spheres.py` and `examples/03_connectivity/plot_sphere_based_connectome.py` to remove duplication across examples. The improved `examples/03_connectivity/plot_sphere_based_connectome.py` contains concepts previously reviewed in both examples. - Merged `examples/03_connectivity/plot_compare_decomposition.py` and `examples/03_connectivity/plot_canica_analysis.py` into an improved `examples/03_connectivity/plot_compare_decomposition.py`. - The Localizer dataset now follows the BIDS organization. Changes ------- - All the connectivity examples are changed from ADHD to brain development fmri dataset. - Examples plot_decoding_tutorial, plot_haxby_decoder, plot_haxby_different_estimators, plot_haxby_full_analysis, plot_oasis_vbm now use :class:`nilearn.decoding.Decoder` and :class:`nilearn.decoding.DecoderRegressor` instead of sklearn SVC and SVR. - :func:`nilearn.plotting.view_img_on_surf`, :func:`nilearn.plotting.view_surf` and :func:`nilearn.plotting.view_connectome` now allow disabling the colorbar, and setting its height and the fontsize of its ticklabels. - :func:`nilearn.plotting.view_img_on_surf`, :func:`nilearn.plotting.view_surf` and :func:`nilearn.plotting.view_connectome` can now display a title. - Rework of the standardize-options of :func:`nilearn.signal.clean` and the various Maskers in `nilearn.input_data`. You can now set `standardize` to `zscore` or `psc`. `psc` stands for `Percent Signal Change`, which can be a meaningful metric for BOLD. - :func:`nilearn.plotting.plot_img` now has explicit keyword arguments `bg_img`, `vmin` and `vmax` to control the background image and the bounds of the colormap. These arguments were already accepted in `kwargs` but not documented before. - :func:`nilearn.plotting.view_connectome` now converts NaNs in the adjacency matrix to 0. - Removed the plotting connectomes example which used the Seitzman atlas from `examples/03_connectivity/plot_sphere_based_connectome.py`. The atlas data is unsuitable for the method & the example is redundant. Fixes ----- - :func:`nilearn.plotting.plot_glass_brain` with colorbar=True does not crash when images have NaNs. - add_contours now accepts `threshold` argument for filled=False. Now `threshold` is equally applied when asked for fillings in the contours. - :func:`nilearn.plotting.plot_surf` and :func:`nilearn.plotting.plot_surf_stat_map` no longer threshold zero values when no threshold is given. - When :func:`nilearn.plotting.plot_surf_stat_map` is used with a thresholded map but without a background map, the surface mesh is displayed in half-transparent grey to maintain a 3D perception. - :func:`nilearn.plotting.view_surf` now accepts surface data provided as a file path. - :func:`nilearn.plotting.plot_glass_brain` now correctly displays the left 'l' orientation even when the given images are completely masked (empty images). - :func:`nilearn.plotting.plot_matrix` providing labels=None, False, or an empty list now correctly disables labels. - :func:`nilearn.plotting.plot_surf_roi` now takes vmin, vmax parameters - :func:`nilearn.datasets.fetch_surf_nki_enhanced` is now downloading the correct left and right functional surface data for each subject - :func:`nilearn.datasets.fetch_atlas_schaefer_2018` now downloads from release version 0.14.3 (instead of 0.8.1) by default, which includes corrected region label names along with 700 and 900 region parcelations. - Colormap creation functions have been updated to avoid matplotlib deprecation warnings about colormap reversal. - Neurovault fetcher no longer fails if unable to update dataset metadata file due to faulty permissions. Contributors ------------ The following people contributed to this release (in alphabetical order):: Alexandre Abraham Alexandre Gramfort Ana Luisa Ana Luisa Pinho Andrés Hoyos Idrobo Antoine Grigis BAZEILLE Thomas Bertrand Thirion Colin Reininger Céline Delettre Dan Gale Daniel Gomez Elizabeth DuPre Eric Larson Franz Liem Gael Varoquaux Gilles de Hollander Greg Kiar Guillaume Lemaitre Ian Abenes Jake Vogel Jerome Dockes Jerome-Alexis Chevalier Julia Huntenburg Kamalakar Daddy Kshitij Chawla (kchawla-pi) Mehdi Rahim Moritz Boos Sylvain Takerkart 0.5.2 ===== **Released April 2019** NEW --- .. warning:: | This is the **last** release supporting Python2 and 3.4 . | The lowest Python version supported is now Python3.5. | We recommend switching to Python3.6 . Fixes ----- - Plotting ``.mgz`` files in MNE broke in ``0.5.1`` and has been fixed. Contributors ------------ The following people contributed to this release:: 11 Kshitij Chawla (kchawla-pi) 3 Gael Varoquaux 2 Alexandre Gramfort 0.5.1 ===== **Released April 2019** NEW --- - **Support for Python2 & Python3.4 wil be removed in the next release.** We recommend Python 3.6 and up. Users with a Python2 or Python3.4 environment will be warned at their first Nilearn import. - Calculate image data dtype from header information - New display mode 'tiled' which allows 2x2 plot arrangement when plotting three cuts (see :ref:`plotting`). - NiftiLabelsMasker now consumes less memory when extracting the signal from a 3D/4D image. This is especially noteworthy when extracting signals from large 4D images. - New function :func:`nilearn.datasets.fetch_atlas_schaefer_2018` - New function :func:`nilearn.datasets.fetch_coords_seitzman_2018` Changes ------- - Lighting used for interactive surface plots changed; plots may look a bit different. - :func:`nilearn.plotting.view_connectome` default colormap is `bwr`, consistent with plot_connectome. - :func:`nilearn.plotting.view_connectome` parameter names are consistent with plot_connectome: - coords is now node_coord - marker_size is noe node_size - cmap is now edge_cmap - threshold is now edge_threshold - :func:`nilearn.plotting.view_markers` and :func:`nilearn.plotting.view_connectome` can accept different marker sizes for each node / marker. - :func:`nilearn.plotting.view_markers()` default marker color is now 'red', consistent with add_markers(). - :func:`nilearn.plotting.view_markers` parameter names are consistent with add_markers(): - coords is now marker_coords - colors is now marker_color - :func:`nilearn.plotting.view_img_on_surf` now accepts a `symmetric_cmap` argument to control whether the colormap is centered around 0 and a `vmin` argument. - Users can now control the size and fontsize of colorbars in interactive surface and connectome plots, or disable the colorbar. Fixes ----- - Example plot_seed_to_voxel_correlation now really saves z-transformed maps. - region_extractor.connected_regions and regions.RegionExtractor now correctly use the provided mask_img. - load_niimg no longer drops header if dtype is changed. - NiftiSpheresMasker no longer silently ignores voxels if no `mask_img` is specified. - Interactive brainsprites generated from `view_img` are correctly rendered in Jupyter Book. Known Issues ------------------- - On Python2, :func:`nilearn.plotting.view_connectome()` & :func:`nilearn.plotting.view_markers()` do not show parameters names in function signature when using help() and similar features. Please refer to their docstrings for this information. - Plotting ``.mgz`` files in MNE is broken. Contributors ------------ The following people contributed to this release:: 2 Bertrand Thirion 90 Kshitij Chawla (kchawla-pi) 22 fliem 16 Jerome Dockes 11 Gael Varoquaux 8 Salma Bougacha 7 himanshupathak21061998 2 Elizabeth DuPre 1 Eric Larson 1 Pierre Bellec 0.5.0 ===== **Released November 2018** NEW --- :ref:`interactive plotting functions `, eg for use in a notebook. - New functions :func:`nilearn.plotting.view_surf` and :func:`nilearn.plotting.view_img_on_surf` for interactive visualization of maps on the cortical surface in a web browser. - New functions :func:`nilearn.plotting.view_connectome` and :func:`nilearn.plotting.view_markers` for interactive visualization of connectomes and seed locations in 3D - New function :func:`nilearn.plotting.view_img` for interactive visualization of volumes with 3 orthogonal cuts. :Note: :func:`nilearn.plotting.view_img` was `nilearn.plotting.view_stat_map` in alpha and beta releases. - :func:`nilearn.plotting.find_parcellation_cut_coords` for extraction of coordinates on brain parcellations denoted as labels. - Added :func:`nilearn.plotting.find_probabilistic_atlas_cut_coords` for extraction of coordinates on brain probabilistic maps. **Minimum supported versions of packages have been bumped up.** - scikit-learn -- v0.18 - scipy -- v0.17 - pandas -- v0.18 - numpy -- v1.11 - matplotlib -- v1.5.1 **Nilearn Python2 support is being removed in the near future.** Users with a Python2 environment will be warned at their first Nilearn import. **Additional dataset downloaders for examples and tutorials.** - :func:`nilearn.datasets.fetch_surf_fsaverage` - :func:`nilearn.datasets.fetch_atlas_pauli_2017` - :func:`nilearn.datasets.fetch_neurovault_auditory_computation_task` - :func:`nilearn.datasets.fetch_neurovault_motor_task` ENHANCEMENTS ------------ :func:`nilearn.image.clean_img` now accepts a mask to restrict the cleaning of the image, reducing memory load and computation time. NiftiMaskers now have a `dtype` parameter, by default keeping the same data type as the input data. Displays by plotting functions can now add a scale bar (see :ref:`plotting`) IMPROVEMENTS ------------ - Lots of other fixes in documentation and examples. - A cleaner layout and improved navigation for the website, with a better introduction. - Dataset fetchers are now more reliable, less verbose. - Searchlight().fit() now accepts 4D niimgs. - Anaconda link in the installation documentation updated. - Scipy is listed as a dependency for Nilearn installation. Notable Changes --------------- Default value of `t_r` in :func:`nilearn.signal.clean` and :func:`nilearn.image.clean_img` is None and cannot be None if `low_pass` or `high_pass` is specified. Lots of changes and improvements. Detailed change list for each release follows. 0.5.0 rc ======== Highlights ---------- :func:`nilearn.plotting.view_img` (formerly `nilearn.plotting.view_stat_map` in Nilearn 0.5.0 pre-release versions) generates significantly smaller notebooks and HTML pages while getting a more consistent look and feel with Nilearn's plotting functions. Huge shout out to Pierre Bellec (pbellec) for making a great feature awesome and for sportingly accommodating all our feedback. :func:`nilearn.image.clean_img` now accepts a mask to restrict the cleaning of the image. This approach can help to reduce the memory load and computation time. Big thanks to Michael Notter (miykael). Enhancements ------------ - :func:`nilearn.plotting.view_img` is now using the brainsprite.js library, which results in much smaller notebooks or html pages. The interactive viewer also looks more similar to the plots generated by :func:`nilearn.plotting.plot_stat_map`, and most parameters found in `plot_stat_map` are now supported in `view_img`. - :func:`nilearn.image.clean_img` now accepts a mask to restrict the cleaning of the image. This approach can help to reduce the memory load and computation time. - :func:`nilearn.decoding.SpaceNetRegressor.fit` raises a meaningful error in regression tasks if the target Y contains all 1s. Changes ------- - Default value of `t_r` in :func:`nilearn.signal.clean` and :func:`nilearn.image.clean_img` is changed from 2.5 to None. If `low_pass` or `high_pass` is specified, then `t_r` needs to be specified as well otherwise it will raise an error. - Order of filters in :func:`nilearn.signal.clean` and :func:`nilearn.image.clean_img` has changed to detrend, low- and high-pass filter, remove confounds and standardize. To ensure orthogonality between temporal filter and confound removal, an additional temporal filter will be applied on the confounds before removing them. This is according to Lindquist et al. (2018). - :func:`nilearn.image.clean_img` now accepts a mask to restrict the cleaning of the image. This approach can help to reduce the memory load and computation time. - :func:`nilearn.plotting.view_img` is now using the brainsprite.js library, which results in much smaller notebooks or html pages. The interactive viewer also looks more similar to the plots generated by :func:`nilearn.plotting.plot_stat_map`, and most parameters found in `plot_stat_map` are now supported in `view_img`. Contributors ------------- The following people contributed to this release:: 15 Gael Varoquaux 114 Pierre Bellec 30 Michael Notter 28 Kshitij Chawla (kchawla-pi) 4 Kamalakar Daddy 4 himanshupathak21061998 1 Horea Christian 7 Jerome Dockes 0.5.0 beta ========== Highlights ---------- **Nilearn Python2 support is being removed in the near future. Users with a Python2 environment will be warned at their first Nilearn import.** Enhancements ------------ Displays created by plotting functions can now add a scale bar to indicate the size in mm or cm (see :ref:`plotting`), contributed by Oscar Esteban Colorbars in plotting functions now have a middle gray background suitable for use with custom colormaps with a non-unity alpha channel. Contributed by Eric Larson (larsoner) Loads of fixes and quality of life improvements - A cleaner layout and improved navigation for the website, with a better introduction. - Less warnings and verbosity while using certain functions and during dataset downloads. - Improved backend for the dataset fetchers means more reliable dataset downloads. - Some datasets, such as the ICBM, are now compressed to take up less disk space. Fixes ----- - Searchlight().fit() now accepts 4D niimgs. Contributed by Dan Gale (danjgale). - plotting.view_markers.open_in_browser() in js_plotting_utils fixed - Brainomics dataset has been replaced in several examples. - Lots of other fixes in documentation and examples. Changes ------- - In nilearn.regions.img_to_signals_labels, the See Also section in documentation now also points to NiftiLabelsMasker and NiftiMapsMasker - Scipy is listed as a dependency for Nilearn installation. - Anaconda link in the installation documentation updated. Contributors ------------- The following people contributed to this release:: 58 Gael Varoquaux 115 Kshitij Chawla (kchawla-pi) 15 Jerome Dockes 14 oesteban 10 Eric Larson 6 Kamalakar Daddy 3 Bertrand Thirion 5 Alexandre Abadie 4 Sourav Singh 3 Alex Rothberg 3 AnaLu 3 Demian Wassermann 3 Horea Christian 3 Jason Gors 3 Jean Remi King 3 MADHYASTHA Meghana 3 SRSteinkamp 3 Simon Steinkamp 3 jerome-alexis_chevalier 3 salma 3 sfvnMAC 2 Akshay 2 Daniel Gomez 2 Guillaume Lemaitre 2 Pierre Bellec 2 arokem 2 erramuzpe 2 foucault 2 jehane 1 Sylvain LANNUZEL 1 Aki Nikolaidis 1 Christophe Bedetti 1 Dan Gale 1 Dillon Plunkett 1 Dimitri Papadopoulos Orfanos 1 Greg Operto 1 Ivan Gonzalez 1 Yaroslav Halchenko 1 dtyulman 0.5.0 alpha =========== This is an alpha release: to download it, you need to explicitly ask for the version number:: pip install nilearn==0.5.0a0 Highlights ---------- - **Minimum supported versions of packages have been bumped up.** - scikit-learn -- v0.18 - scipy -- v0.17 - pandas -- v0.18 - numpy -- v1.11 - matplotlib -- v1.5.1 - New :ref:`interactive plotting functions `, eg for use in a notebook. Enhancements ------------ - All NiftiMaskers now have a `dtype` argument. For now the default behaviour is to keep the same data type as the input data. - Displays created by plotting functions can now add a scale bar to indicate the size in mm or cm (see :ref:`plotting`), contributed by Oscar Esteban - New functions :func:`nilearn.plotting.view_surf` and :func:`nilearn.plotting.view_surf` and :func:`nilearn.plotting.view_img_on_surf` for interactive visualization of maps on the cortical surface in a web browser. - New functions :func:`nilearn.plotting.view_connectome` and :func:`nilearn.plotting.view_markers` to visualize connectomes and seed locations in 3D - New function `nilearn.plotting.view_stat_map` (renamed to :func:`nilearn.plotting.view_img` in stable release) for interactive visualization of volumes with 3 orthogonal cuts. - Add :func:`nilearn.datasets.fetch_surf_fsaverage` to download either fsaverage or fsaverage 5 (Freesurfer cortical meshes). - Added :func:`nilearn.datasets.fetch_atlas_pauli_2017` to download a recent subcortical neuroimaging atlas. - Added :func:`nilearn.plotting.find_parcellation_cut_coords` for extraction of coordinates on brain parcellations denoted as labels. - Added :func:`nilearn.plotting.find_probabilistic_atlas_cut_coords` for extraction of coordinates on brain probabilistic maps. - Added :func:`nilearn.datasets.fetch_neurovault_auditory_computation_task` and :func:`nilearn.datasets.fetch_neurovault_motor_task` for simple example data. Changes ------- - `nilearn.datasets.fetch_surf_fsaverage5` is deprecated and will be removed in a future release. Use :func:`nilearn.datasets.fetch_surf_fsaverage`, with the parameter mesh="fsaverage5" (the default) instead. - fsaverage5 surface data files are now shipped directly with Nilearn. Look to issue #1705 for discussion. - `sklearn.cross_validation` and `sklearn.grid_search` have been replaced by `sklearn.model_selection` in all the examples. - Colorbars in plotting functions now have a middle gray background suitable for use with custom colormaps with a non-unity alpha channel. Contributors ------------ The following people contributed to this release:: 49 Gael Varoquaux 180 Jerome Dockes 57 Kshitij Chawla (kchawla-pi) 38 SylvainLan 36 Kamalakar Daddy 10 Gilles de Hollander 4 Bertrand Thirion 4 MENUET Romuald 3 Moritz Boos 1 Peer Herholz 1 Pierre Bellec 0.4.2 ===== Few important bugs fix release for OHBM conference. Changes ------- - Default colormaps for surface plotting functions have changed to be more consistent with slice plotting. :func:`nilearn.plotting.plot_surf_stat_map` now uses "cold_hot", as :func:`nilearn.plotting.plot_stat_map` does, and :func:`nilearn.plotting.plot_surf_roi` now uses "gist_ncar", as :func:`nilearn.plotting.plot_roi` does. - Improve 3D surface plotting: lock the aspect ratio of the plots and reduce the whitespace around the plots. Bug fixes --------- - Fix bug with input repetition time (TR) which had no effect in signal cleaning. Fixed by Pradeep Raamana. - Fix issues with signal extraction on list of 3D images in :class:`nilearn.regions.Parcellations`. - Fix issues with raising AttributeError rather than HTTPError in datasets fetching utilities. By Jerome Dockes. - Fix issues in datasets testing function uncompression of files. By Pierre Glaser. 0.4.1 ===== This bug fix release is focussed on few bug fixes and minor developments. Enhancements ------------ - :class:`nilearn.decomposition.CanICA` and :class:`nilearn.decomposition.DictLearning` has new attribute `components_img_` providing directly the components learned as a Nifti image. This avoids the step of unmasking the attribute `components_` which is true for older versions. - New object :class:`nilearn.regions.Parcellations` for learning brain parcellations on fmri data. - Add optional reordering of the matrix using a argument `reorder` with :func:`nilearn.plotting.plot_matrix`. .. note:: This feature is usable only if SciPy version is >= 1.0.0 Changes ------- - Using output attribute `components_` which is an extracted components in :class:`nilearn.decomposition.CanICA` and :class:`nilearn.decomposition.DictLearning` is deprecated and will be removed in next two releases. Use `components_img_` instead. Bug fixes --------- - Fix issues using :func:`nilearn.plotting.plot_connectome` when string is passed in `node_color` with display modes left and right hemispheric cuts in the glass brain. - Fix bug while plotting only coordinates using add_markers on glass brain. See issue #1595 - Fix issues with estimators in decomposition module when input images are given in glob patterns. - Fix bug loading Nifti2Images. - Fix bug while adjusting contrast of the background template while using :func:`nilearn.plotting.plot_prob_atlas` - Fix colormap bug with recent matplotlib 2.2.0 0.4.0 ===== **Highlights**: - :func:`nilearn.surface.vol_to_surf` to project volume data to the surface. - :func:`nilearn.plotting.plot_matrix` to display matrices, eg connectomes Enhancements ------------- - New function :func:`nilearn.surface.vol_to_surf` to project a 3d or 4d brain volume on the cortical surface. - New matrix plotting function, eg to display connectome matrices: :func:`nilearn.plotting.plot_matrix` - Expose :func:`nilearn.image.coord_transform` for end users. Useful to transform coordinates (x, y, z) from one image space to another space. - :func:`nilearn.image.resample_img` now takes a linear resampling option (implemented by Joe Necus) - :func:`nilearn.datasets.fetch_atlas_talairach` to fetch the Talairach atlas (http://talairach.org) - Enhancing new surface plotting functions, added new parameters "axes" and "figure" to accept user-specified instances in :func:`nilearn.plotting.plot_surf` and :func:`nilearn.plotting.plot_surf_stat_map` and :func:`nilearn.plotting.plot_surf_roi` - :class:`nilearn.decoding.SearchLight` has new parameter "groups" to do LeaveOneGroupOut type cv with new scikit-learn module model selection. - Enhancing the glass brain plotting in back view 'y' direction. - New parameter "resampling_interpolation" is added in most used plotting functions to have user control for faster visualizations. - Upgraded to Sphinx-Gallery 0.1.11 Bug fixes ---------- - Dimming factor applied to background image in plotting functions with "dim" parameter will no longer accepts as string ('-1'). An error will be raised. - Fixed issues with matplotlib 2.1.0. - Fixed issues with SciPy 1.0.0. Changes --------- - **Backward incompatible change**: :func:`nilearn.plotting.find_xyz_cut_coords` now takes a `mask_img` argument which is a niimg, rather than a `mask` argument, which used to be a numpy array. - The minimum required version for scipy is now 0.14 - Dropped support for Nibabel older than 2.0.2. - :func:`nilearn.image.smooth_img` no longer accepts smoothing parameter fwhm as 0. Behavior is changed in according to the issues with recent SciPy version 1.0.0. - "dim" factor range is slightly increased to -2 to 2 from -1 to 1. Range exceeding -1 meaning more increase in constrast should be cautiously set. - New 'anterior' and 'posterior' view added to the plot_surf family views - Using argument `anat_img` for placing background image in :func:`nilearn.plotting.plot_prob_atlas` is deprecated. Use argument `bg_img` instead. - The examples now use pandas for the behavioral information. Contributors ------------- The following people contributed to this release:: 127 Jerome Dockes 62 Gael Varoquaux 36 Kamalakar Daddy 11 Jeff Chiang 9 Elizabeth DuPre 9 Jona Sassenhagen 7 Sylvain Lan 6 J Necus 5 Pierre-Olivier Quirion 3 AnaLu 3 Jean Remi King 3 MADHYASTHA Meghana 3 Salma Bougacha 3 sfvnMAC 2 Eric Larson 2 Horea Christian 2 Moritz Boos 1 Alex Rothberg 1 Bertrand Thirion 1 Christophe Bedetti 1 John Griffiths 1 Mehdi Rahim 1 Sylvain LANNUZEL 1 Yaroslav Halchenko 1 clfs 0.3.1 ===== This is a minor release for BrainHack. Highlights ---------- * **Dropped support for scikit-learn older than 0.14.1** Minimum supported version is now 0.15. Changelog --------- - The function sym_to_vec is deprecated and will be removed in release 0.4. Use :func:`nilearn.connectome.sym_matrix_to_vec` instead. - Added argument `smoothing_fwhm` to :class:`nilearn.regions.RegionExtractor` to control smoothing according to the resolution of atlas images. Bug fix ------- - The helper function `largest_connected_component` should now work with inputs of non-native data dtypes. - Fix plotting issues when non-finite values are present in background anatomical image. - A workaround to handle non-native endianess in the Nifti images passed to resampling the image. Enhancements ------------- - New data fetcher functions :func:`nilearn.datasets.fetch_neurovault` and :func:`nilearn.datasets.fetch_neurovault_ids` help you download statistical maps from the Neurovault (http://neurovault.org) platform. - New function :func:`nilearn.connectome.vec_to_sym_matrix` reshapes vectors to symmetric matrices. It acts as the reverse of function :func:`nilearn.connectome.sym_matrix_to_vec`. - Add an option allowing to vectorize connectivity matrices returned by the "transform" method of :class:`nilearn.connectome.ConnectivityMeasure`. - :class:`nilearn.connectome.ConnectivityMeasure` now exposes an "inverse_transform" method, useful for going back from vectorized connectivity coefficients to connectivity matrices. Also, it allows to recover the covariance matrices for the "tangent" kind. - Reworking and renaming of connectivity measures example. Renamed from plot_connectivity_measures to plot_group_level_connectivity. - Tighter bounding boxes when using add_contours for plotting. - Function :func:`nilearn.image.largest_connected_component_img` to directly extract the largest connected component from Nifti images. - Improvements in plotting, decoding and functional connectivity examples. 0.3.0 ====== In addition, more details of this release are listed below. Please checkout in **0.3.0 beta** release section for minimum version support of dependencies, latest updates, highlights, changelog and enhancements. Changelog --------- - Function :func:`nilearn.plotting.find_cut_slices` now supports to accept Nifti1Image as an input for argument `img`. - Helper functions `_get_mask_volume` and `_adjust_screening_percentile` are now moved to param_validation file in utilties module to be used in common with Decoder object. Bug fix -------- - Fix bug uncompressing tar files with datasets fetcher. - Fixed bunch of CircleCI documentation build failures. - Fixed deprecations `set_axis_bgcolor` related to matplotlib in plotting functions. - Fixed bug related to not accepting a list of arrays as an input to unmask, in masking module. Enhancements ------------- - ANOVA SVM example on Haxby datasets `plot_haxby_anova_svm` in Decoding section now uses `SelectPercentile` to select voxels rather than `SelectKBest`. - New function `fast_svd` implementation in base decomposition module to Automatically switch between randomized and lapack SVD (heuristic of scikit-learn). 0.3.0 beta =========== To install the beta version, use:: pip install --upgrade --pre nilearn Highlights ---------- * Simple surface plotting * A function to break a parcellation into its connected components * **Dropped support for scikit-learn older than 0.14.1** Minimum supported version is now 0.14.1. * **Dropped support for Python 2.6** * Minimum required version of NiBabel is now 1.2.0, to support loading annoted data with freesurfer. Changelog --------- - A helper function _safe_get_data as a nilearn utility now safely removes NAN values in the images with argument ensure_finite=True. - Connectome functions :func:`nilearn.connectome.cov_to_corr` and :func:`nilearn.connectome.prec_to_partial` can now be used. Bug fix -------- - Fix colormap issue with colorbar=True when using qualitative colormaps Fixed in according with changes of matplotlib 2.0 fixes. - Fix plotting functions to work with NAN values in the images. - Fix bug related get dtype of the images with nibabel get_data(). - Fix bug in nilearn clean_img Enhancements ............ - A new function :func:`nilearn.regions.connected_label_regions` to extract the connected components represented as same label to regions apart with each region labelled as unique label. - New plotting modules for surface plotting visualization. Matplotlib with version higher 1.3.1 is required for plotting surface data using these functions. - Function :func:`nilearn.plotting.plot_surf` can be used for plotting surfaces mesh data with optional background. - A function :func:`nilearn.plotting.plot_surf_stat_map` can be used for plotting statistical maps on a brain surface with optional background. - A function :func:`nilearn.plotting.plot_surf_roi` can be used for plotting statistical maps rois onto brain surface. - A function `nilearn.datasets.fetch_surf_fsaverage5` can be used for surface data object to be as background map for the above plotting functions. - A new data fetcher function :func:`nilearn.datasets.fetch_atlas_surf_destrieux` can give you Destrieux et. al 2010 cortical atlas in fsaverage5 surface space. - A new functional data fetcher function :func:`nilearn.datasets.fetch_surf_nki_enhanced` gives you resting state data preprocessed and projected to fsaverage5 surface space. - Two good examples in plotting gallery shows how to fetch atlas and NKI data and used for plotting on brain surface. - Helper function `load_surf_mesh` in surf_plotting module for loading surface mesh data into two arrays, containing (x, y, z) coordinates for mesh vertices and indices of mesh faces. - Helper function `load_surf_data` in surf_plotting module for loading data of numpy array to represented on a surface mesh. - Add fetcher for Allen et al. 2011 RSN atlas in :func:`nilearn.datasets.fetch_atlas_allen_2011`. - A function :func:`nilearn.datasets.fetch_cobre` is now updated to new light release of COBRE data (schizophrenia) - A new example to show how to extract regions on labels image in example section manipulating images. - coveralls is replaces with codecov - Upgraded to Sphinx version 0.1.7 - Extensive plotting example shows how to use contours and filled contours on glass brain. 0.2.6 ===== Changelog --------- This release enhances usage of several functions by fine tuning their parameters. It allows to select which Haxby subject to fetch. It also refactors documentation to make it easier to understand. Sphinx-gallery has been updated and nilearn is ready for new nibabel 2.1 version. Several bugs related to masks in Searchlight and ABIDE fetching have been resolved. Bug fix ........ - Change default dtype in :func:`nilearn.image.concat_imgs` to be the original type of the data (see #1238). - Fix SearchLight that did not run without process_mask or with one voxel mask. - Fix flipping of left hemisphere when plotting glass brain. - Fix bug when downloading ABIDE timeseries Enhancements ............ - Sphinx-gallery updated to version 0.1.3. - Refactoring of examples and documentation. - Better ordering of regions in :func:`nilearn.datasets.fetch_coords_dosenbach_2010`. - Remove outdated power atlas example. API changes summary ................... - The parameter 'n_subjects' is deprecated and will be removed in future release. Use 'subjects' instead in :func:`nilearn.datasets.fetch_haxby`. - The function :func:`nilearn.datasets.fetch_haxby` will now fetch the data accepting input given in 'subjects' as a list than integer. - Replace `get_affine` by `affine` with recent versions of nibabel. 0.2.5.1 ======= Changelog --------- This is a bugfix release. The new minimum required version of scikit-learn is 0.14.1 API changes summary ................... - default option for `dim` argument in plotting functions which uses MNI template as a background image is now changed to 'auto' mode. Meaning that an automatic contrast setting on background image is applied by default. - Scikit-learn validation tools have been imported and are now used to check consistency of input data, in SpaceNet for example. New features ............ - Add an option to select only off-diagonal elements in sym_to_vec. Also, the scaling of matrices is modified: we divide the diagonal by sqrt(2) instead of multiplying the off-diagonal elements. - Connectivity examples rely on :class:`nilearn.connectome.ConnectivityMeasure` Bug fix ........ - Scipy 0.18 introduces a bug in a corner-case of resampling. Nilearn 0.2.5 can give wrong results with scipy 0.18, but this is fixed in 0.2.6. - Broken links and references fixed in docs 0.2.5 ===== Changelog --------- The 0.2.5 release includes plotting for connectomes and glass brain with hemisphere-specific projection, as well as more didactic examples and improved documentation. New features ............ - New display_mode options in :func:`nilearn.plotting.plot_glass_brain` and :func:`nilearn.plotting.plot_connectome`. It is possible to plot right and left hemisphere projections separately. - A function to load canonical brain mask image in MNI template space, :func:`nilearn.datasets.load_mni152_brain_mask` - A function to load brain grey matter mask image, :func:`nilearn.datasets.fetch_icbm152_brain_gm_mask` - New function :func:`nilearn.image.load_img` loads data from a filename or a list of filenames. - New function :func:`nilearn.image.clean_img` applies the cleaning function :func:`nilearn.signal.clean` on all voxels. - New simple data downloader :func:`nilearn.datasets.fetch_localizer_button_task` to simplify some examples. - The dataset function :func:`nilearn.datasets.fetch_localizer_contrasts` can now download a specific list of subjects rather than a range of subjects. - New function :func:`nilearn.datasets.get_data_dirs` to check where nilearn downloads data. Contributors ------------- Contributors (from ``git shortlog -ns 0.2.4..0.2.5``):: 55 Gael Varoquaux 39 Alexandre Abraham 26 Martin Perez-Guevara 20 Kamalakar Daddy 8 amadeuskanaan 3 Alexandre Abadie 3 Arthur Mensch 3 Elvis Dohmatob 3 Loïc Estève 2 Jerome Dockes 1 Alexandre M. S 1 Bertrand Thirion 1 Ivan Gonzalez 1 robbisg 0.2.4 ===== Changelog --------- The 0.2.4 is a small release focused on documentation for teaching. New features ............ - The path given to the "memory" argument of object now have their "~" expanded to the homedir - Display object created by plotting now uniformely expose an "add_markers" method. - plotting plot_connectome with colorbar is now implemented in function :func:`nilearn.plotting.plot_connectome` - New function :func:`nilearn.image.resample_to_img` to resample one img on another one (just resampling / interpolation, no coregistration) API changes summary ................... - Atlas fetcher :func:`nilearn.datasets.fetch_atlas_msdl` now returns directly labels of the regions in output variable 'labels' and its coordinates in output variable 'region_coords' and its type of network in 'networks'. - The output variable name 'regions' is now changed to 'maps' in AAL atlas fetcher in :func:`nilearn.datasets.fetch_atlas_aal`. - AAL atlas now returns directly its labels in variable 'labels' and its index values in variable 'indices'. 0.2.3 ===== Changelog --------- The 0.2.3 is a small feature release for BrainHack 2016. New features ............ - Mathematical formulas based on numpy functions can be applied on an image or a list of images using :func:`nilearn.image.math_img`. - Downloader for COBRE datasets of 146 rest fMRI subjects with :func:`nilearn.datasets.fetch_cobre` - Downloader for Dosenbach atlas :func:`nilearn.datasets.fetch_coords_dosenbach_2010` - Fetcher for multiscale functional brain parcellations (BASC) :func:`nilearn.datasets.fetch_atlas_basc_multiscale_2015` Bug fixes ......... - Better dimming on white background for plotting 0.2.2 ====== Changelog --------- The 0.2.2 is a bugfix + dependency update release (for sphinx gallery). It aims at preparing a renewal of the tutorials. New features ............ - Fetcher for Megatrawl Netmats dataset. Enhancements ............ - Flake8 is now run on pull requests. - Reworking of the documentation organization. - Sphinx-gallery updated to version 0.1.1 - The default n_subjects=None in :func:`nilearn.datasets.fetch_adhd` is now changed to n_subjects=30. Bug fixes ......... - Fix `symmetric_split` behavior in :func:`nilearn.datasets.fetch_atlas_harvard_oxford` - Fix casting errors when providing integer data to :func:`nilearn.image.high_variance_confounds` - Fix matplotlib 1.5.0 compatibility in :func:`nilearn.plotting.plot_prob_atlas` - Fix matplotlib backend choice on Mac OS X. - :func:`nilearn.plotting.find_xyz_cut_coords` raises a meaningful error when 4D data is provided instead of 3D. - :class:`nilearn.input_data.NiftiSpheresMasker` handles radius smaller than the size of a voxel - :class:`nilearn.regions.RegionExtractor` handles data containing Nans. - Confound regression does not force systematically the normalization of the confounds. - Force time series normalization in :class:`nilearn.connectome.ConnectivityMeasure` and check dimensionality of the input. - `nilearn._utils.numpy_conversions.csv_to_array` could consider valid CSV files as invalid. API changes summary ................... - Deprecated dataset downloading function have been removed. - Download progression message refreshing rate has been lowered to sparsify CircleCI logs. Contributors ............. Contributors (from ``git shortlog -ns 0.2.1..0.2.2``):: 39 Kamalakar Daddy 22 Alexandre Abraham 21 Loïc Estève 19 Gael Varoquaux 12 Alexandre Abadie 7 Salma 3 Danilo Bzdok 1 Arthur Mensch 1 Ben Cipollini 1 Elvis Dohmatob 1 Óscar Nájera 0.2.1 ====== Changelog --------- Small bugfix for more flexible input types (targetter in particular at making code easier in nistats). 0.2 === Changelog --------- The new minimum required version of scikit-learn is 0.13 New features ............ - The new module :mod:`nilearn.connectome` now has class :class:`nilearn.connectome.ConnectivityMeasure` can be useful for computing functional connectivity matrices. - The function nilearn.connectome.sym_to_vec in same module :mod:`nilearn.connectome` is also implemented as a helper function to :class:`nilearn.connectome.ConnectivityMeasure`. - The class :class:`nilearn.decomposition.DictLearning` in :mod:`nilearn.decomposition` is a decomposition method similar to ICA that imposes sparsity on components instead of independence between them. - Integrating back references template from sphinx-gallery of 0.0.11 version release. - Globbing expressions can now be used in all nilearn functions expecting a list of files. - The new module :mod:`nilearn.regions` now has class :class:`nilearn.regions.RegionExtractor` which can be used for post processing brain regions of interest extraction. - The function :func:`nilearn.regions.connected_regions` in :mod:`nilearn.regions` is also implemented as a helper function to :class:`nilearn.regions.RegionExtractor`. - The function :func:`nilearn.image.threshold_img` in :mod:`nilearn.image` is implemented to use it for thresholding statistical maps. Enhancements ............ - Making website a bit elaborated & modernise by using sphinx-gallery. - Documentation enhancement by integrating sphinx-gallery notebook style examples. - Documentation about :class:`nilearn.input_data.NiftiSpheresMasker`. Bug fixes ......... - Fixed bug to control the behaviour when cut_coords=0. in function :func:`nilearn.plotting.plot_stat_map` in :mod:`nilearn.plotting`. See issue # 784. - Fixed bug in :func:`nilearn.image.copy_img` occured while caching the Nifti images. See issue # 793. - Fixed bug causing an IndexError in fast_abs_percentile. See issue # 875 API changes summary ................... - The utilities in function group_sparse_covariance has been moved into :mod:`nilearn.connectome`. - The default value for number of cuts (n_cuts) in function :func:`nilearn.plotting.find_cut_slices` in :mod:`nilearn.plotting` has been changed from 12 to 7 i.e. n_cuts=7. Contributors ............. Contributors (from ``git shortlog -ns 0.1.4..0.2.0``):: 822 Elvis Dohmatob 142 Gael Varoquaux 119 Alexandre Abraham 90 Loïc Estève 85 Kamalakar Daddy 65 Alexandre Abadie 43 Chris Filo Gorgolewski 39 Salma BOUGACHA 29 Danilo Bzdok 20 Martin Perez-Guevara 19 Mehdi Rahim 19 Óscar Nájera 17 martin 8 Arthur Mensch 8 Ben Cipollini 4 ainafp 4 juhuntenburg 2 Martin_Perez_Guevara 2 Michael Hanke 2 arokem 1 Bertrand Thirion 1 Dimitri Papadopoulos Orfanos 0.1.4 ===== Changelog --------- Highlights: - NiftiSpheresMasker: extract signals from balls specified by their coordinates - Obey Debian packaging rules - Add the Destrieux 2009 and Power 2011 atlas - Better caching in maskers Contributors (from ``git shortlog -ns 0.1.3..0.1.4``):: 141 Alexandre Abraham 15 Gael Varoquaux 10 Loïc Estève 2 Arthur Mensch 2 Danilo Bzdok 2 Michael Hanke 1 Mehdi Rahim 0.1.3 ===== Changelog --------- The 0.1.3 release is a bugfix release that fixes a lot of minor bugs. It also includes a full rewamp of the documentation, and support for Python 3. Minimum version of supported packages are now: - numpy 1.6.1 - scipy 0.9.0 - scikit-learn 0.12.1 - Matplotlib 1.1.1 (optional) A non exhaustive list of issues fixed: - Dealing with NaNs in plot_connectome - Fix extreme values in colorbar were sometimes brok - Fix confounds removal with single confounds - Fix frequency filtering - Keep header information in images - add_overlay finds vmin and vmax automatically - vmin and vmax support in plot_connectome - detrending 3D images no longer puts them to zero Contributors (from ``git shortlog -ns 0.1.2..0.1.3``):: 129 Alexandre Abraham 67 Loïc Estève 57 Gael Varoquaux 44 Ben Cipollini 37 Danilo Bzdok 20 Elvis Dohmatob 14 Óscar Nájera 9 Salma BOUGACHA 8 Alexandre Gramfort 7 Kamalakar Daddy 3 Demian Wassermann 1 Bertrand Thirion 0.1.2 ===== Changelog --------- The 0.1.2 release is a bugfix release, specifically to fix the NiftiMapsMasker. 0.1.1 ===== Changelog --------- The main change compared to 0.1 is the addition of connectome plotting via the nilearn.plotting.plot_connectome function. See the `plotting documentation `_ for more details. Contributors (from ``git shortlog -ns 0.1..0.1.1``):: 81 Loïc Estève 18 Alexandre Abraham 18 Danilo Bzdok 14 Ben Cipollini 2 Gaël Varoquaux 0.1 === Changelog --------- First release of nilearn. Contributors (from ``git shortlog -ns 0.1``):: 600 Gaël Varoquaux 483 Alexandre Abraham 302 Loïc Estève 254 Philippe Gervais 122 Virgile Fritsch 83 Michael Eickenberg 59 Jean Kossaifi 57 Jaques Grobler 46 Danilo Bzdok 35 Chris Filo Gorgolewski 28 Ronald Phlypo 25 Ben Cipollini 15 Bertrand Thirion 13 Alexandre Gramfort 12 Fabian Pedregosa 11 Yannick Schwartz 9 Mehdi Rahim 7 Óscar Nájera 6 Elvis Dohmatob 4 Konstantin Shmelkov 3 Jason Gors 3 Salma Bougacha 1 Alexandre Savio 1 Jan Margeta 1 Matthias Ekman 1 Michael Waskom 1 Vincent Michel