.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_nilearn_101.py: Basic nilearn example: manipulating and looking at data ======================================================= A simple example showing how to load an existing Nifti file and use basic nilearn functionalities. .. code-block:: default # Let us use a Nifti file that is shipped with nilearn from nilearn.datasets import MNI152_FILE_PATH # Note that the variable MNI152_FILE_PATH is just a path to a Nifti file print('Path to MNI152 template: %r' % MNI152_FILE_PATH) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Path to MNI152 template: '/home/varoquau/dev/nilearn/nilearn/datasets/data/avg152T1_brain.nii.gz' A first step: looking at our data ---------------------------------- Let's quickly plot this file: .. code-block:: default from nilearn import plotting plotting.plot_img(MNI152_FILE_PATH) .. image:: /auto_examples/images/sphx_glr_plot_nilearn_101_001.png :alt: plot nilearn 101 :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none This is not a very pretty plot. We just used the simplest possible code. There is a whole :ref:`section of the documentation ` on making prettier code. **Exercise**: Try plotting one of your own files. In the above, MNI152_FILE_PATH is nothing more than a string with a path pointing to a nifti image. You can replace it with a string pointing to a file on your disk. Note that it should be a 3D volume, and not a 4D volume. Simple image manipulation: smoothing ------------------------------------- Let's use an image-smoothing function from nilearn: :func:`nilearn.image.smooth_img` Functions containing 'img' can take either a filename or an image as input. Here we give as inputs the image filename and the smoothing value in mm .. code-block:: default from nilearn import image smooth_anat_img = image.smooth_img(MNI152_FILE_PATH, fwhm=3) # While we are giving a file name as input, the function returns # an in-memory object: smooth_anat_img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none This is an in-memory object. We can pass it to nilearn function, for instance to look at it .. code-block:: default plotting.plot_img(smooth_anat_img) .. image:: /auto_examples/images/sphx_glr_plot_nilearn_101_002.png :alt: plot nilearn 101 :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none We could also pass it to the smoothing function .. code-block:: default more_smooth_anat_img = image.smooth_img(smooth_anat_img, fwhm=3) plotting.plot_img(more_smooth_anat_img) .. image:: /auto_examples/images/sphx_glr_plot_nilearn_101_003.png :alt: plot nilearn 101 :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Saving results to a file ------------------------- We can save any in-memory object as follows: .. code-block:: default more_smooth_anat_img.to_filename('more_smooth_anat_img.nii.gz') Finally, calling plotting.show() is necessary to display the figure when running as a script outside IPython .. code-block:: default plotting.show() | ______ To recap, all the nilearn tools can take data as filenames or in-memory objects, and return brain volumes as in-memory objects. These can be passed on to other nilearn tools, or saved to disk. .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 2.948 seconds) .. _sphx_glr_download_auto_examples_plot_nilearn_101.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/plot_nilearn_101.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_nilearn_101.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_nilearn_101.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_