.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_plot_nilearn_101.py:
Basic nilearn example: manipulating and looking at data
=======================================================
A simple example showing how to load an existing Nifti file and use
basic nilearn functionalities.
.. code-block:: default
# Let us use a Nifti file that is shipped with nilearn
from nilearn.datasets import MNI152_FILE_PATH
# Note that the variable MNI152_FILE_PATH is just a path to a Nifti file
print('Path to MNI152 template: %r' % MNI152_FILE_PATH)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Path to MNI152 template: '/home/varoquau/dev/nilearn/nilearn/datasets/data/avg152T1_brain.nii.gz'
A first step: looking at our data
----------------------------------
Let's quickly plot this file:
.. code-block:: default
from nilearn import plotting
plotting.plot_img(MNI152_FILE_PATH)
.. image:: /auto_examples/images/sphx_glr_plot_nilearn_101_001.png
:alt: plot nilearn 101
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
This is not a very pretty plot. We just used the simplest possible
code. There is a whole :ref:`section of the documentation `
on making prettier code.
**Exercise**: Try plotting one of your own files. In the above,
MNI152_FILE_PATH is nothing more than a string with a path pointing to
a nifti image. You can replace it with a string pointing to a file on
your disk. Note that it should be a 3D volume, and not a 4D volume.
Simple image manipulation: smoothing
-------------------------------------
Let's use an image-smoothing function from nilearn:
:func:`nilearn.image.smooth_img`
Functions containing 'img' can take either a filename or an image as input.
Here we give as inputs the image filename and the smoothing value in mm
.. code-block:: default
from nilearn import image
smooth_anat_img = image.smooth_img(MNI152_FILE_PATH, fwhm=3)
# While we are giving a file name as input, the function returns
# an in-memory object:
smooth_anat_img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
This is an in-memory object. We can pass it to nilearn function, for
instance to look at it
.. code-block:: default
plotting.plot_img(smooth_anat_img)
.. image:: /auto_examples/images/sphx_glr_plot_nilearn_101_002.png
:alt: plot nilearn 101
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
We could also pass it to the smoothing function
.. code-block:: default
more_smooth_anat_img = image.smooth_img(smooth_anat_img, fwhm=3)
plotting.plot_img(more_smooth_anat_img)
.. image:: /auto_examples/images/sphx_glr_plot_nilearn_101_003.png
:alt: plot nilearn 101
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Saving results to a file
-------------------------
We can save any in-memory object as follows:
.. code-block:: default
more_smooth_anat_img.to_filename('more_smooth_anat_img.nii.gz')
Finally, calling plotting.show() is necessary to display the figure
when running as a script outside IPython
.. code-block:: default
plotting.show()
|
______
To recap, all the nilearn tools can take data as filenames or in-memory
objects, and return brain volumes as in-memory objects. These can be
passed on to other nilearn tools, or saved to disk.
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 2.948 seconds)
.. _sphx_glr_download_auto_examples_plot_nilearn_101.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/plot_nilearn_101.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_nilearn_101.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_nilearn_101.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_