.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_decoding_tutorial.py: A introduction tutorial to fMRI decoding ========================================== Here is a simple tutorial on decoding with nilearn. It reproduces the Haxby 2001 study on a face vs cat discrimination task in a mask of the ventral stream. * J.V. Haxby et al. "Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex", Science vol 293 (2001), p 2425.-2430. This tutorial is meant as an introduction to the various steps of a decoding analysis using Nilearn meta-estimator: :class:`nilearn.decoding.Decoder` It is not a minimalistic example, as it strives to be didactic. It is not meant to be copied to analyze new data: many of the steps are unnecessary. .. contents:: **Contents** :local: :depth: 1 Retrieve and load the fMRI data from the Haxby study ------------------------------------------------------ First download the data ........................ The :func:`nilearn.datasets.fetch_haxby` function will download the Haxby dataset if not present on the disk, in the nilearn data directory. It can take a while to download about 310 Mo of data from the Internet. .. code-block:: default from nilearn import datasets # By default 2nd subject will be fetched haxby_dataset = datasets.fetch_haxby() # 'func' is a list of filenames: one for each subject fmri_filename = haxby_dataset.func[0] # print basic information on the dataset print('First subject functional nifti images (4D) are at: %s' % fmri_filename) # 4D data .. rst-class:: sphx-glr-script-out Out: .. code-block:: none First subject functional nifti images (4D) are at: /home/varoquau/nilearn_data/haxby2001/subj2/bold.nii.gz Visualizing the fmri volume ............................ One way to visualize a fmri volume is using :func:`nilearn.plotting.plot_epi`. We will visualize the previously fetched fmri data from Haxby dataset. Because fmri data are 4D (they consist of many 3D EPI images), we cannot plot them directly using :func:`nilearn.plotting.plot_epi` (which accepts just 3D input). Here we are using :func:`nilearn.image.mean_img` to extract a single 3D EPI image from the fmri data. .. code-block:: default from nilearn import plotting from nilearn.image import mean_img plotting.view_img(mean_img(fmri_filename), threshold=None) .. only:: builder_html .. raw:: html

Feature extraction: from fMRI volumes to a data matrix ....................................................... These are some really lovely images, but for machine learning we need matrices to work with the actual data. Fortunately, the :class:`nilearn.decoding.Decoder` object we will use later on can automatically transform Nifti images into matrices. All we have to do for now is define a mask filename. A mask of the Ventral Temporal (VT) cortex coming from the Haxby study is available: .. code-block:: default mask_filename = haxby_dataset.mask_vt[0] # Let's visualize it, using the subject's anatomical image as a # background plotting.plot_roi(mask_filename, bg_img=haxby_dataset.anat[0], cmap='Paired') .. image:: /auto_examples/images/sphx_glr_plot_decoding_tutorial_001.png :alt: plot decoding tutorial :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Load the behavioral labels ........................... Now that the brain images are converted to a data matrix, we can apply machine-learning to them, for instance to predict the task that the subject was doing. The behavioral labels are stored in a CSV file, separated by spaces. We use pandas to load them in an array. .. code-block:: default import pandas as pd # Load behavioral information behavioral = pd.read_csv(haxby_dataset.session_target[0], delimiter=' ') print(behavioral) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none labels chunks 0 rest 0 1 rest 0 2 rest 0 3 rest 0 4 rest 0 ... ... ... 1447 rest 11 1448 rest 11 1449 rest 11 1450 rest 11 1451 rest 11 [1452 rows x 2 columns] The task was a visual-recognition task, and the labels denote the experimental condition: the type of object that was presented to the subject. This is what we are going to try to predict. .. code-block:: default conditions = behavioral['labels'] print(conditions) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none 0 rest 1 rest 2 rest 3 rest 4 rest ... 1447 rest 1448 rest 1449 rest 1450 rest 1451 rest Name: labels, Length: 1452, dtype: object Restrict the analysis to cats and faces ........................................ As we can see from the targets above, the experiment contains many conditions. As a consequence, the data is quite big. Not all of this data has an interest to us for decoding, so we will keep only fmri signals corresponding to faces or cats. We create a mask of the samples belonging to the condition; this mask is then applied to the fmri data to restrict the classification to the face vs cat discrimination. The input data will become much smaller (i.e. fmri signal is shorter): .. code-block:: default condition_mask = conditions.isin(['face', 'cat']) Because the data is in one single large 4D image, we need to use index_img to do the split easily. .. code-block:: default from nilearn.image import index_img fmri_niimgs = index_img(fmri_filename, condition_mask) We apply the same mask to the targets .. code-block:: default conditions = conditions[condition_mask] # Convert to numpy array conditions = conditions.values print(conditions.shape) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none (216,) Decoding with Support Vector Machine ------------------------------------ As a decoder, we use a Support Vector Classifier with a linear kernel. We first create it using by using :class:`nilearn.decoding.Decoder`. .. code-block:: default from nilearn.decoding import Decoder decoder = Decoder(estimator='svc', mask=mask_filename, standardize=True) The decoder object is an object that can be fit (or trained) on data with labels, and then predict labels on data without. We first fit it on the data .. code-block:: default decoder.fit(fmri_niimgs, conditions) We can then predict the labels from the data .. code-block:: default prediction = decoder.predict(fmri_niimgs) print(prediction) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none ['face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'face' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat' 'cat'] Note that for this classification task both classes contain the same number of samples (the problem is balanced). Then, we can use accuracy to measure the performance of the decoder. This is done by defining accuracy as the `scoring`. Let's measure the prediction accuracy: .. code-block:: default print((prediction == conditions).sum() / float(len(conditions))) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none 1.0 This prediction accuracy score is meaningless. Why? Measuring prediction scores using cross-validation --------------------------------------------------- The proper way to measure error rates or prediction accuracy is via cross-validation: leaving out some data and testing on it. Manually leaving out data .......................... Let's leave out the 30 last data points during training, and test the prediction on these 30 last points: .. code-block:: default fmri_niimgs_train = index_img(fmri_niimgs, slice(0, -30)) fmri_niimgs_test = index_img(fmri_niimgs, slice(-30, None)) conditions_train = conditions[:-30] conditions_test = conditions[-30:] decoder = Decoder(estimator='svc', mask=mask_filename, standardize=True) decoder.fit(fmri_niimgs_train, conditions_train) prediction = decoder.predict(fmri_niimgs_test) # The prediction accuracy is calculated on the test data: this is the accuracy # of our model on examples it hasn't seen to examine how well the model perform # in general. print("Prediction Accuracy: {:.3f}".format( (prediction == conditions_test).sum() / float(len(conditions_test)))) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Prediction Accuracy: 0.767 Implementing a KFold loop .......................... We can manually split the data in train and test set repetitively in a `KFold` strategy by importing scikit-learn's object: .. code-block:: default from sklearn.model_selection import KFold cv = KFold(n_splits=5) # The "cv" object's split method can now accept data and create a # generator which can yield the splits. fold = 0 for train, test in cv.split(conditions): fold += 1 decoder = Decoder(estimator='svc', mask=mask_filename, standardize=True) decoder.fit(index_img(fmri_niimgs, train), conditions[train]) prediction = decoder.predict(index_img(fmri_niimgs, test)) print( "CV Fold {:01d} | Prediction Accuracy: {:.3f}".format( fold, (prediction == conditions[test]).sum() / float(len( conditions[test])))) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none CV Fold 1 | Prediction Accuracy: 0.886 CV Fold 2 | Prediction Accuracy: 0.767 CV Fold 3 | Prediction Accuracy: 0.767 CV Fold 4 | Prediction Accuracy: 0.698 CV Fold 5 | Prediction Accuracy: 0.744 Cross-validation with the decoder ................................... The decoder also implements a cross-validation loop by default and returns an array of shape (cross-validation parameters, `n_folds`). We can use accuracy score to measure its performance by defining `accuracy` as the `scoring` parameter. .. code-block:: default n_folds = 5 decoder = Decoder( estimator='svc', mask=mask_filename, standardize=True, cv=n_folds, scoring='accuracy' ) decoder.fit(fmri_niimgs, conditions) Cross-validation pipeline can also be implemented manually. More details can be found on `scikit-learn website `_. Then we can check the best performing parameters per fold. .. code-block:: default print(decoder.cv_params_['face']) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none {'C': [100.0, 100.0, 100.0, 100.0, 100.0]} .. note:: We can speed things up to use all the CPUs of our computer with the n_jobs parameter. The best way to do cross-validation is to respect the structure of the experiment, for instance by leaving out full sessions of acquisition. The number of the session is stored in the CSV file giving the behavioral data. We have to apply our session mask, to select only cats and faces. .. code-block:: default session_label = behavioral['chunks'][condition_mask] The fMRI data is acquired by sessions, and the noise is autocorrelated in a given session. Hence, it is better to predict across sessions when doing cross-validation. To leave a session out, pass the cross-validator object to the cv parameter of decoder. .. code-block:: default from sklearn.model_selection import LeaveOneGroupOut cv = LeaveOneGroupOut() decoder = Decoder(estimator='svc', mask=mask_filename, standardize=True, cv=cv) decoder.fit(fmri_niimgs, conditions, groups=session_label) print(decoder.cv_scores_) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none {'cat': [1.0, 1.0, 1.0, 1.0, 0.9629629629629629, 0.8518518518518519, 0.9753086419753086, 0.40740740740740744, 0.9876543209876543, 1.0, 0.9259259259259259, 0.8765432098765432], 'face': [1.0, 1.0, 1.0, 1.0, 0.9629629629629629, 0.8518518518518519, 0.9753086419753086, 0.40740740740740744, 0.9876543209876543, 1.0, 0.9259259259259259, 0.8765432098765432]} Inspecting the model weights ----------------------------- Finally, it may be useful to inspect and display the model weights. Turning the weights into a nifti image ....................................... We retrieve the SVC discriminating weights .. code-block:: default coef_ = decoder.coef_ print(coef_) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [[-3.88470496e-02 -1.86752301e-02 -3.22274216e-02 -2.88102959e-02 4.17749325e-02 1.10475230e-02 1.69629496e-02 -5.49689746e-02 -1.93774964e-02 -3.50417282e-02 1.08279420e-02 -1.28500904e-02 -1.54318246e-02 -3.78044766e-02 -3.68278843e-02 2.27559486e-02 6.55001569e-03 -7.64035810e-03 1.66730533e-02 -8.00465290e-03 5.28260841e-02 -8.15726427e-02 -6.35569770e-02 2.40756228e-02 4.58822986e-02 -2.22076987e-02 -1.76884867e-02 2.21688791e-02 -9.51060955e-03 5.74705437e-02 2.13813970e-02 -9.12121553e-02 4.02834813e-03 -2.88625303e-02 -3.88125004e-02 -3.34318339e-02 2.20849786e-03 8.71166910e-03 -3.36652654e-02 -2.40699164e-02 -6.80080915e-02 1.65046603e-02 2.70137797e-02 -6.55172891e-03 -1.21378785e-02 5.46414482e-02 8.11539605e-03 3.60127949e-02 -1.52387259e-02 7.01266307e-02 1.28209707e-03 2.07523141e-02 -4.09182233e-03 3.71552557e-02 -3.76543826e-02 -1.03610833e-02 -2.37698340e-02 -5.47603290e-02 4.41999453e-02 -1.47077322e-01 -2.33517585e-02 1.86654146e-02 6.64352621e-02 -9.05549619e-02 -1.21725698e-02 -2.94679392e-03 3.21326085e-02 -3.03306030e-02 6.13950625e-02 1.12012184e-02 1.93353725e-02 -1.30258438e-02 4.41940442e-02 -2.22555559e-02 6.86548103e-02 1.69012021e-02 1.78552870e-02 1.00063616e-02 2.98480821e-02 -2.51580472e-02 1.05947293e-02 -6.30480956e-03 2.21078703e-03 -2.22817281e-02 1.42260127e-02 -1.52785552e-02 -1.97786728e-02 -4.31616469e-02 -4.54072427e-02 3.40811516e-02 -2.78551502e-02 -2.80247240e-02 -3.69302239e-02 -5.70139068e-02 -6.97323201e-02 3.19241723e-03 -8.33510335e-03 -3.36854771e-02 3.03555194e-02 8.66308758e-03 6.17999734e-03 5.92798917e-02 9.05111104e-03 -1.48580755e-02 1.43214948e-02 -1.08762837e-02 2.67057762e-02 4.72688937e-02 -2.95716194e-02 3.08742349e-02 1.57552956e-02 -3.16005309e-02 -3.99190412e-02 -5.38977754e-02 2.81973107e-02 -1.11834233e-02 -5.44116841e-02 6.30731455e-02 -1.49667423e-02 2.47161026e-03 -4.55571956e-02 -1.83424158e-02 1.19705427e-02 -3.71288818e-02 -2.24789274e-03 4.57569977e-02 4.78066089e-02 2.51037931e-03 -4.30721546e-02 -5.33655494e-03 5.75657772e-02 7.39176239e-03 -3.19811241e-02 4.34825118e-03 1.67904380e-02 -2.91879779e-02 -2.23727315e-03 -8.28199549e-03 -9.97902833e-03 2.16656229e-02 -1.92063443e-03 -1.32898766e-02 -2.79642711e-02 -1.74906015e-02 -9.15528100e-03 -7.08025319e-03 -1.42698520e-02 5.05702430e-02 -1.84396745e-02 -4.70413129e-02 1.72190631e-02 -4.75572704e-02 -9.07173538e-04 3.99828969e-02 7.52267793e-02 7.24263299e-03 4.81497704e-02 4.49523379e-02 3.60351787e-02 -8.14533608e-03 1.94961186e-02 3.57077647e-02 4.88176479e-02 3.82080231e-02 6.22475993e-02 6.12260882e-02 -1.68378582e-02 1.66159384e-02 3.34741207e-02 -1.79793491e-02 4.45397278e-02 -3.52426285e-02 -3.66473886e-02 -4.61409223e-03 4.85716305e-02 3.38888095e-02 6.20125212e-03 1.73238804e-02 2.01273546e-02 2.16579963e-02 2.90731527e-02 2.37270512e-02 4.83611676e-02 -9.20501127e-03 -2.81969339e-02 -2.13305250e-02 1.80406458e-03 4.78568230e-02 -9.76550106e-03 1.11160941e-02 -1.64705732e-02 -2.88446602e-02 2.42268357e-02 -1.22079300e-02 -2.92193305e-02 -2.89203731e-02 -3.38761598e-02 -3.64215343e-03 2.64728367e-02 4.57032443e-02 -5.92020175e-02 -2.13146935e-02 -3.08698354e-02 5.48930352e-02 -3.38041466e-02 6.11185692e-03 1.41178873e-02 1.09946985e-02 5.32574663e-02 -2.11838562e-02 6.35988176e-03 -1.12818106e-02 -2.63615194e-02 -2.21910538e-02 -5.30672549e-02 -3.97748526e-02 -1.29431073e-01 -3.27318992e-02 -2.89007278e-02 -9.11560565e-03 -7.26992350e-03 -3.70177539e-02 -6.33422851e-02 2.04153743e-03 -8.24863181e-02 -6.69635553e-02 -2.28586757e-03 -2.32903052e-02 1.77469490e-02 -8.72663964e-02 -2.75697050e-03 -4.37286444e-02 -1.27746226e-02 2.77375396e-02 -4.31668490e-02 -3.21909835e-02 -2.27495813e-02 -2.56845772e-02 2.03155890e-02 -9.88056652e-03 -3.14295368e-02 -1.81001958e-02 -1.11810948e-03 -4.16456522e-02 -6.22036331e-02 2.55427685e-04 -6.72172777e-02 6.52438849e-02 1.06279181e-02 2.21492706e-02 -1.98227544e-02 -1.85107108e-02 4.04761053e-02 -3.02130001e-02 -8.08212852e-02 -7.40773301e-02 -4.92687632e-02 -1.01544870e-02 1.09172301e-02 -4.48197846e-02 2.92093404e-02 7.03567732e-03 5.06297975e-03 -4.82924061e-03 2.48271160e-03 2.99976042e-02 -2.62546227e-03 4.63550320e-03 7.88406440e-02 1.04606760e-02 1.67696076e-02 -4.35721181e-02 -1.08621517e-02 2.09745496e-02 -4.40930298e-02 3.15757738e-03 6.97069224e-02 8.59640338e-02 4.95096261e-02 6.02632267e-03 5.55187662e-02 -2.98208880e-02 4.11946592e-03 -3.21184072e-02 -3.14239366e-02 -5.30016029e-02 2.66641737e-02 3.13671460e-02 6.65645366e-03 -1.28393653e-02 2.19674896e-02 5.67231369e-02 2.25086109e-02 -2.04145898e-02 5.09075541e-03 2.84696658e-02 -1.81224202e-02 -8.46496915e-03 -3.18112018e-02 -1.18216117e-02 -4.09899129e-02 3.11041173e-02 9.61315440e-03 -8.24098277e-03 -3.11481432e-02 8.55845882e-03 -9.67734188e-03 1.32032237e-02 4.05486533e-02 8.21010036e-03 -3.26566678e-02 -4.32627041e-03 -1.75124000e-02 6.87123713e-03 3.44346675e-02 7.01687243e-02 2.16269413e-02 5.30865354e-03 8.15657716e-02 6.38543194e-02 -2.30760087e-03 -1.17255317e-02 1.75482671e-01 3.17386365e-02 -3.15194631e-02 3.33275442e-02 2.22248333e-02 9.99729448e-03 -4.73823357e-02 -2.12285309e-02 -3.97808585e-02 -6.02664877e-02 -4.63979431e-02 1.02755643e-02 -3.05362102e-04 1.80352494e-02 -1.75047995e-02 -8.70569631e-02 1.00429828e-01 4.45197303e-03 7.45126483e-02 -6.11978837e-02 2.81053600e-02 -1.40642871e-02 3.13916044e-02 -1.63457985e-02 3.65700295e-02 -5.14604248e-03 1.44762348e-02 6.34381595e-02 2.34023563e-02 8.79030548e-02 6.13933626e-02 -1.39020262e-02 2.06770969e-02 -3.14576941e-03 5.14253734e-02 -2.88097191e-02 1.59905296e-02 2.09224028e-02 -3.28411153e-02 -2.58827170e-02 -5.59115227e-02 -3.63771077e-02 1.12592690e-02 2.16792660e-02 -1.51322002e-02 -7.81031897e-03 2.42020438e-02 9.44817325e-02 -2.62430992e-02 1.16214592e-04 -5.23300137e-03 4.17021198e-02 8.83630746e-02 6.22090665e-03 1.86171395e-02 1.54275525e-02 3.49538821e-03 6.19235901e-03 -1.19520351e-02 1.59130990e-02 7.10295111e-03 -8.91137635e-02 -3.53347077e-03 1.23196842e-02 3.03209946e-02 -2.36741571e-02 -3.81955289e-02 -4.97580907e-02 4.65828711e-02 -1.23004149e-02 -1.10093378e-02 2.17590868e-02 2.18215021e-02 2.62921086e-02 1.05029259e-02 1.84180740e-02 8.31863689e-04 -6.63456331e-03 3.48613706e-02 1.48989047e-02 -1.11347730e-02 6.67404896e-03 -1.99598221e-02 -3.98118744e-02 3.01188722e-02 -1.09588144e-02 -4.10855524e-02 2.71430985e-02 1.16142877e-02 -1.55127583e-02 3.26914658e-02 3.94583199e-02 8.47078829e-03 2.19426825e-02 -9.86320779e-03 -3.60583580e-02 -4.75927887e-02 1.89644982e-02 -5.57029385e-02 -3.31010398e-02 -2.24391037e-02 -3.35395732e-02 -4.06399133e-02 1.08606942e-02 1.12545843e-02 7.61359079e-02 4.03814581e-03 3.06311858e-02 2.88500098e-02 4.70360031e-03 5.12218779e-02 -4.09447951e-02 1.22994825e-03 -2.49838000e-02 5.84588157e-02 -1.04721987e-01 -4.40682531e-02 1.18250700e-02 -5.81868755e-02 -4.81118336e-02 9.15446344e-03 1.03017952e-02 -5.07928493e-03 -3.22632790e-02 -3.18664812e-02 -1.53435935e-02 -5.19995850e-02 1.55243814e-02 2.92794304e-02 -1.92077667e-02 1.76309598e-02 2.67380860e-02 5.75230403e-02 -1.37856317e-02 2.59815284e-02 1.50061350e-02 1.27145217e-02 -2.28689359e-02 -1.06428882e-02 9.79310377e-03 -4.76402200e-02 1.63869589e-02]] It's a numpy array with only one coefficient per voxel: .. code-block:: default print(coef_.shape) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none (1, 464) To get the Nifti image of these coefficients, we only need retrieve the `coef_img_` in the decoder and select the class .. code-block:: default coef_img = decoder.coef_img_['face'] coef_img is now a NiftiImage. We can save the coefficients as a nii.gz file: .. code-block:: default decoder.coef_img_['face'].to_filename('haxby_svc_weights.nii.gz') Plotting the SVM weights ......................... We can plot the weights, using the subject's anatomical as a background .. code-block:: default plotting.view_img( decoder.coef_img_['face'], bg_img=haxby_dataset.anat[0], title="SVM weights", dim=-1 ) .. only:: builder_html .. raw:: html

Further reading ---------------- * The :ref:`section of the documentation on decoding ` * :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_anova_svm.py` For decoding without a precomputed mask * :ref:`frem` * :ref:`space_net` ______________ .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 37.064 seconds) .. _sphx_glr_download_auto_examples_plot_decoding_tutorial.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/plot_decoding_tutorial.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_decoding_tutorial.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_decoding_tutorial.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_