.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_07_advanced_plot_neurovault_meta_analysis.py: NeuroVault meta-analysis of stop-go paradigm studies. ===================================================== This example shows how to download statistical maps from NeuroVault See :func:`nilearn.datasets.fetch_neurovault_ids` documentation for more details. .. code-block:: default # Author: Ben Cipollini # License: BSD import scipy from nilearn.datasets import fetch_neurovault_ids from nilearn import plotting from nilearn.image import new_img_like, load_img, math_img, get_data Fetch images for "successful stop minus go"-like protocols. ----------------------------------------------------------- .. code-block:: default # These are the images we are interested in, # in order to save time we specify their ids explicitly. stop_go_image_ids = (151, 3041, 3042, 2676, 2675, 2818, 2834) # These ids were determined by querying neurovault like this: # from nilearn.datasets import fetch_neurovault, neurovault # nv_data = fetch_neurovault( # max_images=7, # cognitive_paradigm_cogatlas=neurovault.Contains('stop signal'), # contrast_definition=neurovault.Contains('succ', 'stop', 'go'), # map_type='T map') # print([meta['id'] for meta in nv_data['images_meta']]) nv_data = fetch_neurovault_ids(image_ids=stop_go_image_ids) images_meta = nv_data['images_meta'] collections = nv_data['collections_meta'] .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Reading local neurovault data. No image found on local disk. getting new batch: http://neurovault.org/api/images/3041 getting new batch: http://neurovault.org/api/collections/42 Downloading file: https://neurovault.org/media/images/42/task002_cope10_succstop_minus_go.nii.gz Download succeeded, downloaded to: /home/varoquau/nilearn_data/neurovault/collection_42/image_3041.nii.gz Already fetched 1 image getting new batch: http://neurovault.org/api/images/3042 getting new batch: http://neurovault.org/api/collections/98 Downloading file: https://neurovault.org/media/images/98/task002_cope06_succ_stop_vs_go.nii.gz Download succeeded, downloaded to: /home/varoquau/nilearn_data/neurovault/collection_98/image_3042.nii.gz Already fetched 2 images getting new batch: http://neurovault.org/api/images/2818 getting new batch: http://neurovault.org/api/collections/423 Downloading file: https://neurovault.org/media/images/423/task002_cope007_tstat1.nii.gz Download succeeded, downloaded to: /home/varoquau/nilearn_data/neurovault/collection_423/image_2818.nii.gz Already fetched 3 images getting new batch: http://neurovault.org/api/images/2834 Downloading file: https://neurovault.org/media/images/423/task003_cope007_tstat1.nii.gz Download succeeded, downloaded to: /home/varoquau/nilearn_data/neurovault/collection_423/image_2834.nii.gz Already fetched 4 images getting new batch: http://neurovault.org/api/images/2675 getting new batch: http://neurovault.org/api/collections/413 Downloading file: https://neurovault.org/media/images/413/A_model001_task002_cope011_tstat1.nii.gz Download succeeded, downloaded to: /home/varoquau/nilearn_data/neurovault/collection_413/image_2675.nii.gz Already fetched 5 images getting new batch: http://neurovault.org/api/images/2676 Downloading file: https://neurovault.org/media/images/413/B_model001_task002_cope011_tstat1.nii.gz Download succeeded, downloaded to: /home/varoquau/nilearn_data/neurovault/collection_413/image_2676.nii.gz Already fetched 6 images getting new batch: http://neurovault.org/api/images/151 Downloading file: https://neurovault.org/media/images/42/task001_cope07_succstop_minus_go.nii.gz Download succeeded, downloaded to: /home/varoquau/nilearn_data/neurovault/collection_42/image_151.nii.gz Already fetched 7 images Visualize the data ------------------ .. code-block:: default print('\nplotting glass brain for collected images\n') for im in images_meta: plotting.plot_glass_brain( im['absolute_path'], title='image {0}: {1}'.format(im['id'], im['contrast_definition'])) .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_neurovault_meta_analysis_001.png :alt: plot neurovault meta analysis :class: sphx-glr-multi-img * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_neurovault_meta_analysis_002.png :alt: plot neurovault meta analysis :class: sphx-glr-multi-img * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_neurovault_meta_analysis_003.png :alt: plot neurovault meta analysis :class: sphx-glr-multi-img * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_neurovault_meta_analysis_004.png :alt: plot neurovault meta analysis :class: sphx-glr-multi-img * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_neurovault_meta_analysis_005.png :alt: plot neurovault meta analysis :class: sphx-glr-multi-img * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_neurovault_meta_analysis_006.png :alt: plot neurovault meta analysis :class: sphx-glr-multi-img * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_neurovault_meta_analysis_007.png :alt: plot neurovault meta analysis :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none plotting glass brain for collected images Compute statistics ------------------ .. code-block:: default def t_to_z(t_scores, deg_of_freedom): p_values = scipy.stats.t.sf(t_scores, df=deg_of_freedom) z_values = scipy.stats.norm.isf(p_values) return z_values # Compute z values mean_maps = [] z_imgs = [] current_collection = None print("\nComputing maps...") # convert t to z for all images for this_meta in images_meta: if this_meta['collection_id'] != current_collection: print("\n\nCollection {0}:".format(this_meta['id'])) current_collection = this_meta['collection_id'] # Load and validate the downloaded image. t_img = load_img(this_meta['absolute_path']) deg_of_freedom = this_meta['number_of_subjects'] - 2 print(" Image {1}: degrees of freedom: {2}".format( "", this_meta['id'], deg_of_freedom)) # Convert data, create new image. z_img = new_img_like( t_img, t_to_z(get_data(t_img), deg_of_freedom=deg_of_freedom)) z_imgs.append(z_img) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Computing maps... Collection 3041: Image 3041: degrees of freedom: 13 Collection 3042: Image 3042: degrees of freedom: 22 Collection 2818: Image 2818: degrees of freedom: 18 Image 2834: degrees of freedom: 18 Collection 2675: Image 2675: degrees of freedom: 6 Image 2676: degrees of freedom: 6 Collection 151: Image 151: degrees of freedom: 13 Plot the combined z maps ------------------------ .. code-block:: default cut_coords = [-15, -8, 6, 30, 46, 62] meta_analysis_img = math_img( 'np.sum(z_imgs, axis=3) / np.sqrt(z_imgs.shape[3])', z_imgs=z_imgs) plotting.plot_stat_map(meta_analysis_img, display_mode='z', threshold=6, cut_coords=cut_coords, vmax=12) plotting.show() .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_neurovault_meta_analysis_008.png :alt: plot neurovault meta analysis :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 39.107 seconds) .. _sphx_glr_download_auto_examples_07_advanced_plot_neurovault_meta_analysis.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/07_advanced/plot_neurovault_meta_analysis.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_neurovault_meta_analysis.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_neurovault_meta_analysis.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_