.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_07_advanced_plot_localizer_simple_analysis.py:
Massively univariate analysis of a calculation task from the Localizer dataset
==============================================================================
This example shows how to use the Localizer dataset in a basic analysis.
A standard Anova is performed (massively univariate F-test) and the resulting
Bonferroni-corrected p-values are plotted.
We use a calculation task and 20 subjects out of the 94 available.
The Localizer dataset contains many contrasts and subject-related
variates. The user can refer to the
`plot_localizer_mass_univariate_methods.py` example to see how to use these.
.. code-block:: default
# Author: Virgile Fritsch, , May. 2014
import numpy as np
import matplotlib.pyplot as plt
from nilearn import datasets
from nilearn.input_data import NiftiMasker
from nilearn.image import get_data
Load Localizer contrast
.. code-block:: default
n_samples = 20
localizer_dataset = datasets.fetch_localizer_calculation_task(
n_subjects=n_samples)
tested_var = np.ones((n_samples, 1))
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.
output = genfromtxt(fname, **kwargs)
Mask data
.. code-block:: default
nifti_masker = NiftiMasker(
smoothing_fwhm=5,
memory='nilearn_cache', memory_level=1) # cache options
cmap_filenames = localizer_dataset.cmaps
fmri_masked = nifti_masker.fit_transform(cmap_filenames)
Anova (parametric F-scores)
.. code-block:: default
from sklearn.feature_selection import f_regression
_, pvals_anova = f_regression(fmri_masked, tested_var,
center=False) # do not remove intercept
pvals_anova *= fmri_masked.shape[1]
pvals_anova[np.isnan(pvals_anova)] = 1
pvals_anova[pvals_anova > 1] = 1
neg_log_pvals_anova = - np.log10(pvals_anova)
neg_log_pvals_anova_unmasked = nifti_masker.inverse_transform(
neg_log_pvals_anova)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/scikit-learn/sklearn/utils/validation.py:73: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
return f(**kwargs)
Visualization
.. code-block:: default
from nilearn.plotting import plot_stat_map, show
# Various plotting parameters
z_slice = 45 # plotted slice
threshold = - np.log10(0.1) # 10% corrected
# Plot Anova p-values
fig = plt.figure(figsize=(5, 6), facecolor='w')
display = plot_stat_map(neg_log_pvals_anova_unmasked,
threshold=threshold,
display_mode='z', cut_coords=[z_slice],
figure=fig)
masked_pvals = np.ma.masked_less(get_data(neg_log_pvals_anova_unmasked),
threshold)
title = ('Negative $\\log_{10}$ p-values'
'\n(Parametric + Bonferroni correction)'
'\n%d detections' % (~masked_pvals.mask).sum())
display.title(title, y=1.1, alpha=0.8)
show()
.. image:: /auto_examples/07_advanced/images/sphx_glr_plot_localizer_simple_analysis_001.png
:alt: plot localizer simple analysis
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/nilearn/nilearn/plotting/displays.py:1608: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
ax = fh.add_axes([fraction * index * (x1 - x0) + x0, y0,
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 2.214 seconds)
.. _sphx_glr_download_auto_examples_07_advanced_plot_localizer_simple_analysis.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/07_advanced/plot_localizer_simple_analysis.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_localizer_simple_analysis.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_localizer_simple_analysis.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_