.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_07_advanced_plot_localizer_simple_analysis.py: Massively univariate analysis of a calculation task from the Localizer dataset ============================================================================== This example shows how to use the Localizer dataset in a basic analysis. A standard Anova is performed (massively univariate F-test) and the resulting Bonferroni-corrected p-values are plotted. We use a calculation task and 20 subjects out of the 94 available. The Localizer dataset contains many contrasts and subject-related variates. The user can refer to the `plot_localizer_mass_univariate_methods.py` example to see how to use these. .. code-block:: default # Author: Virgile Fritsch, , May. 2014 import numpy as np import matplotlib.pyplot as plt from nilearn import datasets from nilearn.input_data import NiftiMasker from nilearn.image import get_data Load Localizer contrast .. code-block:: default n_samples = 20 localizer_dataset = datasets.fetch_localizer_calculation_task( n_subjects=n_samples) tested_var = np.ones((n_samples, 1)) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default. output = genfromtxt(fname, **kwargs) Mask data .. code-block:: default nifti_masker = NiftiMasker( smoothing_fwhm=5, memory='nilearn_cache', memory_level=1) # cache options cmap_filenames = localizer_dataset.cmaps fmri_masked = nifti_masker.fit_transform(cmap_filenames) Anova (parametric F-scores) .. code-block:: default from sklearn.feature_selection import f_regression _, pvals_anova = f_regression(fmri_masked, tested_var, center=False) # do not remove intercept pvals_anova *= fmri_masked.shape[1] pvals_anova[np.isnan(pvals_anova)] = 1 pvals_anova[pvals_anova > 1] = 1 neg_log_pvals_anova = - np.log10(pvals_anova) neg_log_pvals_anova_unmasked = nifti_masker.inverse_transform( neg_log_pvals_anova) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/scikit-learn/sklearn/utils/validation.py:73: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). return f(**kwargs) Visualization .. code-block:: default from nilearn.plotting import plot_stat_map, show # Various plotting parameters z_slice = 45 # plotted slice threshold = - np.log10(0.1) # 10% corrected # Plot Anova p-values fig = plt.figure(figsize=(5, 6), facecolor='w') display = plot_stat_map(neg_log_pvals_anova_unmasked, threshold=threshold, display_mode='z', cut_coords=[z_slice], figure=fig) masked_pvals = np.ma.masked_less(get_data(neg_log_pvals_anova_unmasked), threshold) title = ('Negative $\\log_{10}$ p-values' '\n(Parametric + Bonferroni correction)' '\n%d detections' % (~masked_pvals.mask).sum()) display.title(title, y=1.1, alpha=0.8) show() .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_localizer_simple_analysis_001.png :alt: plot localizer simple analysis :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:1608: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. ax = fh.add_axes([fraction * index * (x1 - x0) + x0, y0, .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 2.214 seconds) .. _sphx_glr_download_auto_examples_07_advanced_plot_localizer_simple_analysis.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/07_advanced/plot_localizer_simple_analysis.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_localizer_simple_analysis.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_localizer_simple_analysis.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_