.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_07_advanced_plot_localizer_mass_univariate_methods.py: Massively univariate analysis of a motor task from the Localizer dataset ======================================================================== This example shows the results obtained in a massively univariate analysis performed at the inter-subject level with various methods. We use the [left button press (auditory cue)] task from the Localizer dataset and seek association between the contrast values and a variate that measures the speed of pseudo-word reading. No confounding variate is included in the model. 1. A standard Anova is performed. Data smoothed at 5 voxels FWHM are used. 2. A permuted Ordinary Least Squares algorithm is run at each voxel. Data smoothed at 5 voxels FWHM are used. .. code-block:: default # Author: Virgile Fritsch, , May. 2014 import numpy as np import matplotlib.pyplot as plt from nilearn import datasets from nilearn.input_data import NiftiMasker from nilearn.mass_univariate import permuted_ols from nilearn.image import get_data Load Localizer contrast .. code-block:: default n_samples = 94 localizer_dataset = datasets.fetch_localizer_contrasts( ['left button press (auditory cue)'], n_subjects=n_samples) # print basic information on the dataset print('First contrast nifti image (3D) is located at: %s' % localizer_dataset.cmaps[0]) tested_var = localizer_dataset.ext_vars['pseudo'] # Quality check / Remove subjects with bad tested variate mask_quality_check = np.where(tested_var != b'n/a')[0] n_samples = mask_quality_check.size contrast_map_filenames = [localizer_dataset.cmaps[i] for i in mask_quality_check] tested_var = tested_var[mask_quality_check].astype(float).reshape((-1, 1)) print("Actual number of subjects after quality check: %d" % n_samples) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default. output = genfromtxt(fname, **kwargs) First contrast nifti image (3D) is located at: /home/varoquau/nilearn_data/brainomics_localizer/brainomics_data/S01/cmaps_LeftAuditoryClick.nii.gz Actual number of subjects after quality check: 89 Mask data .. code-block:: default nifti_masker = NiftiMasker( smoothing_fwhm=5, memory='nilearn_cache', memory_level=1) # cache options fmri_masked = nifti_masker.fit_transform(contrast_map_filenames) Anova (parametric F-scores) .. code-block:: default from sklearn.feature_selection import f_regression _, pvals_anova = f_regression(fmri_masked, tested_var, center=True) pvals_anova *= fmri_masked.shape[1] pvals_anova[np.isnan(pvals_anova)] = 1 pvals_anova[pvals_anova > 1] = 1 neg_log_pvals_anova = - np.log10(pvals_anova) neg_log_pvals_anova_unmasked = nifti_masker.inverse_transform( neg_log_pvals_anova) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/scikit-learn/sklearn/utils/validation.py:73: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). return f(**kwargs) Perform massively univariate analysis with permuted OLS .. code-block:: default neg_log_pvals_permuted_ols, _, _ = permuted_ols( tested_var, fmri_masked, model_intercept=True, n_perm=5000, # 5,000 for the sake of time. Idealy, this should be 10,000 n_jobs=1) # can be changed to use more CPUs neg_log_pvals_permuted_ols_unmasked = nifti_masker.inverse_transform( np.ravel(neg_log_pvals_permuted_ols)) Visualization .. code-block:: default from nilearn.plotting import plot_stat_map, show # Various plotting parameters z_slice = 12 # plotted slice threshold = - np.log10(0.1) # 10% corrected vmax = min(np.amax(neg_log_pvals_permuted_ols), np.amax(neg_log_pvals_anova)) # Plot Anova p-values fig = plt.figure(figsize=(5, 7), facecolor='k') display = plot_stat_map(neg_log_pvals_anova_unmasked, threshold=threshold, display_mode='z', cut_coords=[z_slice], figure=fig, vmax=vmax, black_bg=True) n_detections = (get_data(neg_log_pvals_anova_unmasked) > threshold).sum() title = ('Negative $\\log_{10}$ p-values' '\n(Parametric + Bonferroni correction)' '\n%d detections') % n_detections display.title(title, y=1.2) # Plot permuted OLS p-values fig = plt.figure(figsize=(5, 7), facecolor='k') display = plot_stat_map(neg_log_pvals_permuted_ols_unmasked, threshold=threshold, display_mode='z', cut_coords=[z_slice], figure=fig, vmax=vmax, black_bg=True) n_detections = (get_data(neg_log_pvals_permuted_ols_unmasked) > threshold).sum() title = ('Negative $\\log_{10}$ p-values' '\n(Non-parametric + max-type correction)' '\n%d detections') % n_detections display.title(title, y=1.2) show() .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_localizer_mass_univariate_methods_001.png :alt: plot localizer mass univariate methods :class: sphx-glr-multi-img * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_localizer_mass_univariate_methods_002.png :alt: plot localizer mass univariate methods :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:1608: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. ax = fh.add_axes([fraction * index * (x1 - x0) + x0, y0, .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 2.105 seconds) .. _sphx_glr_download_auto_examples_07_advanced_plot_localizer_mass_univariate_methods.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/07_advanced/plot_localizer_mass_univariate_methods.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_localizer_mass_univariate_methods.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_localizer_mass_univariate_methods.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_