.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_07_advanced_plot_ica_resting_state.py:
Multivariate decompositions: Independent component analysis of fMRI
===================================================================
This example is meant to demonstrate nilearn as a low-level tools used to
combine feature extraction with a multivariate decomposition algorithm
for movie-watching.
This example is a toy. To apply ICA to fmri timeseries data, it is advised
to look at the example
:ref:`sphx_glr_auto_examples_03_connectivity_plot_compare_decomposition.py`.
The example here applies the scikit-learn ICA to movie watching timeseries data.
Note that following the code in the example, any unsupervised
decomposition model, or other latent-factor models, can be applied to
the data, as the scikit-learn API enables to exchange them as almost
black box (though the relevant parameter for brain maps might no longer
be given by a call to fit_transform).
Load movie watching dataset
.. code-block:: default
from nilearn import datasets
# Here we use only single subject to get faster-running code.
dataset = datasets.fetch_development_fmri(n_subjects=1)
func_filename = dataset.func[0]
# print basic information on the dataset
print('First subject functional nifti image (4D) is at: %s' %
dataset.func[0]) # 4D data
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
First subject functional nifti image (4D) is at: /home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
Preprocess
.. code-block:: default
from nilearn.input_data import NiftiMasker
# This is fmri timeseries data: the background has not been removed yet,
# thus we need to use mask_strategy='epi' to compute the mask from the
# EPI images
masker = NiftiMasker(smoothing_fwhm=8, memory='nilearn_cache', memory_level=1,
mask_strategy='epi', standardize=True)
data_masked = masker.fit_transform(func_filename)
Apply ICA
.. code-block:: default
from sklearn.decomposition import FastICA
n_components = 10
ica = FastICA(n_components=n_components, random_state=42)
components_masked = ica.fit_transform(data_masked.T).T
# Normalize estimated components, for thresholding to make sense
components_masked -= components_masked.mean(axis=0)
components_masked /= components_masked.std(axis=0)
# Threshold
import numpy as np
components_masked[np.abs(components_masked) < .8] = 0
# Now invert the masking operation, going back to a full 3D
# representation
component_img = masker.inverse_transform(components_masked)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/scikit-learn/sklearn/decomposition/_fastica.py:118: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations.
warnings.warn('FastICA did not converge. Consider increasing '
Visualize the results
.. code-block:: default
# Show some interesting components
from nilearn import image
from nilearn.plotting import plot_stat_map, show
# Use the mean as a background
mean_img = image.mean_img(func_filename)
plot_stat_map(image.index_img(component_img, 0), mean_img)
plot_stat_map(image.index_img(component_img, 1), mean_img)
show()
.. rst-class:: sphx-glr-horizontal
*
.. image:: /auto_examples/07_advanced/images/sphx_glr_plot_ica_resting_state_001.png
:alt: plot ica resting state
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/07_advanced/images/sphx_glr_plot_ica_resting_state_002.png
:alt: plot ica resting state
:class: sphx-glr-multi-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 8.707 seconds)
.. _sphx_glr_download_auto_examples_07_advanced_plot_ica_resting_state.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/07_advanced/plot_ica_resting_state.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_ica_resting_state.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_ica_resting_state.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_