.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_07_advanced_plot_haxby_mass_univariate.py: Massively univariate analysis of face vs house recognition ========================================================== A permuted Ordinary Least Squares algorithm is run at each voxel in order to detemine whether or not it behaves differently under a "face viewing" condition and a "house viewing" condition. We consider the mean image per session and per condition. Otherwise, the observations cannot be exchanged at random because a time dependance exists between observations within a same session (see [1] for more detailed explanations). The example shows the small differences that exist between Bonferroni-corrected p-values and family-wise corrected p-values obtained from a permutation test combined with a max-type procedure [2]. Bonferroni correction is a bit conservative, as revealed by the presence of a few false negative. References ---------- [1] Winkler, A. M. et al. (2014). Permutation inference for the general linear model. Neuroimage. [2] Anderson, M. J. & Robinson, J. (2001). Permutation tests for linear models. Australian & New Zealand Journal of Statistics, 43(1), 75-88. (http://avesbiodiv.mncn.csic.es/estadistica/permut2.pdf) .. code-block:: default # Author: Virgile Fritsch, , Feb. 2014 Load Haxby dataset .. code-block:: default from nilearn import datasets haxby_dataset = datasets.fetch_haxby(subjects=[2]) # print basic information on the dataset print('Mask nifti image (3D) is located at: %s' % haxby_dataset.mask) print('Functional nifti image (4D) is located at: %s' % haxby_dataset.func[0]) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Mask nifti image (3D) is located at: /home/varoquau/nilearn_data/haxby2001/mask.nii.gz Functional nifti image (4D) is located at: /home/varoquau/nilearn_data/haxby2001/subj2/bold.nii.gz Mask data .. code-block:: default mask_filename = haxby_dataset.mask from nilearn.input_data import NiftiMasker nifti_masker = NiftiMasker( smoothing_fwhm=8, mask_img=mask_filename, memory='nilearn_cache', memory_level=1) # cache options func_filename = haxby_dataset.func[0] fmri_masked = nifti_masker.fit_transform(func_filename) Restrict to faces and houses .. code-block:: default import numpy as np import pandas as pd labels = pd.read_csv(haxby_dataset.session_target[0], sep=" ") conditions = labels['labels'] categories = conditions.unique() conditions_encoded = np.zeros_like(conditions) for c, category in enumerate(categories): conditions_encoded[conditions == category] = c sessions = labels['chunks'] condition_mask = conditions.isin(['face', 'house']) conditions_encoded = conditions_encoded[condition_mask] fmri_masked = fmri_masked[condition_mask] # We consider the mean image per session and per condition. # Otherwise, the observations cannot be exchanged at random because # a time dependence exists between observations within a same session. n_sessions = np.unique(sessions).size grouped_fmri_masked = np.empty((2 * n_sessions, # two conditions per session fmri_masked.shape[1])) grouped_conditions_encoded = np.empty((2 * n_sessions, 1)) for s in range(n_sessions): session_mask = sessions[condition_mask] == s session_house_mask = np.logical_and(session_mask, conditions[condition_mask] == 'house') session_face_mask = np.logical_and(session_mask, conditions[condition_mask] == 'face') grouped_fmri_masked[2 * s] = fmri_masked[session_house_mask].mean(0) grouped_fmri_masked[2 * s + 1] = fmri_masked[session_face_mask].mean(0) grouped_conditions_encoded[2 * s] = conditions_encoded[ session_house_mask][0] grouped_conditions_encoded[2 * s + 1] = conditions_encoded[ session_face_mask][0] Perform massively univariate analysis with permuted OLS We use a two-sided t-test to compute p-values, but we keep trace of the effect sign to add it back at the end and thus observe the signed effect .. code-block:: default from nilearn.mass_univariate import permuted_ols neg_log_pvals, t_scores_original_data, _ = permuted_ols( grouped_conditions_encoded, grouped_fmri_masked, # + intercept as a covariate by default n_perm=10000, two_sided_test=True, n_jobs=1) # can be changed to use more CPUs signed_neg_log_pvals = neg_log_pvals * np.sign(t_scores_original_data) signed_neg_log_pvals_unmasked = nifti_masker.inverse_transform( signed_neg_log_pvals) scikit-learn F-scores for comparison F-test does not allow to observe the effect sign (pure two-sided test) .. code-block:: default from sklearn.feature_selection import f_regression _, pvals_bonferroni = f_regression( grouped_fmri_masked, grouped_conditions_encoded) # f_regression implicitly adds intercept pvals_bonferroni *= fmri_masked.shape[1] pvals_bonferroni[np.isnan(pvals_bonferroni)] = 1 pvals_bonferroni[pvals_bonferroni > 1] = 1 neg_log_pvals_bonferroni = -np.log10(pvals_bonferroni) neg_log_pvals_bonferroni_unmasked = nifti_masker.inverse_transform( neg_log_pvals_bonferroni) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/scikit-learn/sklearn/utils/validation.py:73: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). return f(**kwargs) Visualization .. code-block:: default import matplotlib.pyplot as plt from nilearn.plotting import plot_stat_map, show # Use the fmri mean image as a surrogate of anatomical data from nilearn import image from nilearn.image import get_data mean_fmri_img = image.mean_img(func_filename) threshold = -np.log10(0.1) # 10% corrected vmax = min(signed_neg_log_pvals.max(), neg_log_pvals_bonferroni.max()) # Plot thresholded p-values map corresponding to F-scores display = plot_stat_map(neg_log_pvals_bonferroni_unmasked, mean_fmri_img, threshold=threshold, cmap=plt.cm.RdBu_r, display_mode='z', cut_coords=[-1, ], vmax=vmax) neg_log_pvals_bonferroni_data = get_data(neg_log_pvals_bonferroni_unmasked) n_detections = (neg_log_pvals_bonferroni_data > threshold).sum() title = ('Negative $\\log_{10}$ p-values' '\n(Parametric two-sided F-test' '\n+ Bonferroni correction)' '\n%d detections') % n_detections display.title(title, y=1.1) # Plot permutation p-values map display = plot_stat_map(signed_neg_log_pvals_unmasked, mean_fmri_img, threshold=threshold, cmap=plt.cm.RdBu_r, display_mode='z', cut_coords=[-1, ], vmax=vmax) n_detections = (np.abs(signed_neg_log_pvals) > threshold).sum() title = ('Negative $\\log_{10}$ p-values' '\n(Non-parametric two-sided test' '\n+ max-type correction)' '\n%d detections') % n_detections display.title(title, y=1.1) show() .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_haxby_mass_univariate_001.png :alt: plot haxby mass univariate :class: sphx-glr-multi-img * .. image:: /auto_examples/07_advanced/images/sphx_glr_plot_haxby_mass_univariate_002.png :alt: plot haxby mass univariate :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:1608: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. ax = fh.add_axes([fraction * index * (x1 - x0) + x0, y0, .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 21.975 seconds) .. _sphx_glr_download_auto_examples_07_advanced_plot_haxby_mass_univariate.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/07_advanced/plot_haxby_mass_univariate.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_haxby_mass_univariate.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_haxby_mass_univariate.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_