.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_06_manipulating_images_plot_extract_rois_smith_atlas.py:
Regions Extraction of Default Mode Networks using Smith Atlas
=============================================================
This simple example shows how to extract regions from Smith atlas
resting state networks.
In particular, we show how Default Mode Network regions are extracted
using :class:`nilearn.regions.RegionExtractor` from regions module
Fetching the smith ICA 10 RSN by importing datasets utilities
.. code-block:: default
from nilearn import datasets
smith_atlas = datasets.fetch_atlas_smith_2009()
atlas_networks = smith_atlas.rsn10
Import region extractor to extract atlas networks
.. code-block:: default
from nilearn.regions import RegionExtractor
# min_region_size in voxel volume mm^3
extraction = RegionExtractor(atlas_networks, min_region_size=800,
threshold=98, thresholding_strategy='percentile')
# Just call fit() to execute region extraction procedure
extraction.fit()
regions_img = extraction.regions_img_
Visualization
Show region extraction results by importing image & plotting utilities
.. code-block:: default
from nilearn import plotting
from nilearn.image import index_img
from nilearn.plotting import find_xyz_cut_coords
# Showing region extraction results using 4D maps visualization tool
plotting.plot_prob_atlas(regions_img, display_mode='z', cut_coords=1,
view_type='contours', title="Regions extracted.")
# To reduce the complexity, we choose to display all the regions
# extracted from network 3
import numpy as np
DMN_network = index_img(atlas_networks, 3)
plotting.plot_stat_map(DMN_network, display_mode='z', cut_coords=1,
title='Network 3', colorbar=False)
regions_indices_network3 = np.where(np.array(extraction.index_) == 3)
for index in regions_indices_network3[0]:
cur_img = index_img(extraction.regions_img_, index)
coords = find_xyz_cut_coords(cur_img)
plotting.plot_stat_map(cur_img, display_mode='z', cut_coords=coords[2:3],
title="Blob of network3", colorbar=False)
plotting.show()
.. rst-class:: sphx-glr-horizontal
*
.. image:: /auto_examples/06_manipulating_images/images/sphx_glr_plot_extract_rois_smith_atlas_001.png
:alt: plot extract rois smith atlas
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/06_manipulating_images/images/sphx_glr_plot_extract_rois_smith_atlas_002.png
:alt: plot extract rois smith atlas
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/06_manipulating_images/images/sphx_glr_plot_extract_rois_smith_atlas_003.png
:alt: plot extract rois smith atlas
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/06_manipulating_images/images/sphx_glr_plot_extract_rois_smith_atlas_004.png
:alt: plot extract rois smith atlas
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/06_manipulating_images/images/sphx_glr_plot_extract_rois_smith_atlas_005.png
:alt: plot extract rois smith atlas
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/06_manipulating_images/images/sphx_glr_plot_extract_rois_smith_atlas_006.png
:alt: plot extract rois smith atlas
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/06_manipulating_images/images/sphx_glr_plot_extract_rois_smith_atlas_007.png
:alt: plot extract rois smith atlas
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/06_manipulating_images/images/sphx_glr_plot_extract_rois_smith_atlas_008.png
:alt: plot extract rois smith atlas
:class: sphx-glr-multi-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/nilearn/nilearn/plotting/displays.py:1608: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
ax = fh.add_axes([fraction * index * (x1 - x0) + x0, y0,
/home/varoquau/dev/nilearn/nilearn/plotting/displays.py:97: UserWarning: No contour levels were found within the data range.
im = getattr(ax, type)(data_2d.copy(),
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 3 minutes 34.851 seconds)
.. _sphx_glr_download_auto_examples_06_manipulating_images_plot_extract_rois_smith_atlas.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/06_manipulating_images/plot_extract_rois_smith_atlas.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_extract_rois_smith_atlas.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_extract_rois_smith_atlas.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_