.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_05_glm_second_level_plot_thresholding.py:
Statistical testing of a second-level analysis
==============================================
Perform a one-sample t-test on a bunch of images (a.k.a. second-level analyis
in fMRI) and threshold the resulting statistical map.
This example is based on the so-called localizer dataset.
It shows activation related to a mental computation task, as opposed to
narrative sentence reading/listening.
Prepare some images for a simple t test
----------------------------------------
This is a simple manually performed second level analysis.
.. code-block:: default
from nilearn import datasets
n_samples = 20
localizer_dataset = datasets.fetch_localizer_calculation_task(
n_subjects=n_samples)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.
output = genfromtxt(fname, **kwargs)
Get the set of individual statstical maps (contrast estimates)
.. code-block:: default
cmap_filenames = localizer_dataset.cmaps
Perform the second level analysis
----------------------------------
First, we define a design matrix for the model. As the model is trivial
(one-sample test), the design matrix is just one column with ones.
.. code-block:: default
import pandas as pd
design_matrix = pd.DataFrame([1] * n_samples, columns=['intercept'])
Next, we specify and estimate the model.
.. code-block:: default
from nilearn.glm.second_level import SecondLevelModel
second_level_model = SecondLevelModel().fit(
cmap_filenames, design_matrix=design_matrix)
Compute the only possible contrast: the one-sample test. Since there
is only one possible contrast, we don't need to specify it in detail.
.. code-block:: default
z_map = second_level_model.compute_contrast(output_type='z_score')
Threshold the resulting map:
false positive rate < .001, cluster size > 10 voxels.
.. code-block:: default
from nilearn.glm import threshold_stats_img
thresholded_map1, threshold1 = threshold_stats_img(
z_map, alpha=.001, height_control='fpr', cluster_threshold=10)
Now use FDR <.05 (False Discovery Rate) and no cluster-level threshold.
.. code-block:: default
thresholded_map2, threshold2 = threshold_stats_img(
z_map, alpha=.05, height_control='fdr')
print('The FDR=.05 threshold is %.3g' % threshold2)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
The FDR=.05 threshold is 2.37
Now use FWER <.05 (Family-Wise Error Rate) and no cluster-level
threshold. As the data has not been intensively smoothed, we can
use a simple Bonferroni correction.
.. code-block:: default
thresholded_map3, threshold3 = threshold_stats_img(
z_map, alpha=.05, height_control='bonferroni')
print('The p<.05 Bonferroni-corrected threshold is %.3g' % threshold3)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
The p<.05 Bonferroni-corrected threshold is 4.88
Visualize the results
---------------------
First, the unthresholded map.
.. code-block:: default
from nilearn import plotting
display = plotting.plot_stat_map(z_map, title='Raw z map')
.. image:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_thresholding_001.png
:alt: plot thresholding
:class: sphx-glr-single-img
Second, the p<.001 uncorrected-thresholded map (with only clusters > 10
voxels).
.. code-block:: default
plotting.plot_stat_map(
thresholded_map1, cut_coords=display.cut_coords, threshold=threshold1,
title='Thresholded z map, fpr <.001, clusters > 10 voxels')
.. image:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_thresholding_002.png
:alt: plot thresholding
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Third, the fdr-thresholded map.
.. code-block:: default
plotting.plot_stat_map(thresholded_map2, cut_coords=display.cut_coords,
title='Thresholded z map, expected fdr = .05',
threshold=threshold2)
.. image:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_thresholding_003.png
:alt: plot thresholding
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Fourth, the Bonferroni-thresholded map.
.. code-block:: default
plotting.plot_stat_map(thresholded_map3, cut_coords=display.cut_coords,
title='Thresholded z map, expected fwer < .05',
threshold=threshold3)
.. image:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_thresholding_004.png
:alt: plot thresholding
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
These different thresholds correspond to different statistical
guarantees: in the FWER-corrected image there is only a
probability smaller than .05 of observing any false positive voxel. In the
FDR-corrected image, 5% of the voxels found are likely to be false
positive. In the uncorrected image, one expects a few tens of false
positive voxels.
.. code-block:: default
plotting.show()
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 8.055 seconds)
.. _sphx_glr_download_auto_examples_05_glm_second_level_plot_thresholding.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/05_glm_second_level/plot_thresholding.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_thresholding.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_thresholding.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_