.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_05_glm_second_level_plot_proportion_activated_voxels.py:
Second-level fMRI model: true positive proportion in clusters
=============================================================
This script showcases the so-called "All resolution inference" procedure, in
which the proportion of true discoveries in arbitrary clusters is estimated.
The clusters can be defined from the input image, i.e. in a circular way, as
the error control accounts for arbitrary cluster selection.
Rosenblatt JD, Finos L, Weeda WD, Solari A, Goeman JJ. All-Resolutions
Inference for brain imaging. Neuroimage. 2018 Nov 1;181:786-796. doi:
10.1016/j.neuroimage.2018.07.060
Fetch dataset
--------------
We download a list of left vs right button press contrasts from a
localizer dataset. Note that we fetch individual t-maps that represent the
BOLD activity estimate divided by the uncertainty about this estimate.
.. code-block:: default
from nilearn.datasets import fetch_localizer_contrasts
n_subjects = 16
data = fetch_localizer_contrasts(["left vs right button press"], n_subjects,
get_tmaps=True)
from nilearn import plotting
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.
output = genfromtxt(fname, **kwargs)
Estimate second level model
---------------------------
We define the input maps and the design matrix for the second level model
and fit it.
.. code-block:: default
import pandas as pd
second_level_input = data['cmaps']
design_matrix = pd.DataFrame([1] * len(second_level_input),
columns=['intercept'])
Model specification and fit
.. code-block:: default
from nilearn.glm.second_level import SecondLevelModel
second_level_model = SecondLevelModel(smoothing_fwhm=8.0)
second_level_model = second_level_model.fit(second_level_input,
design_matrix=design_matrix)
To estimate the contrast is very simple. We can just provide the column
name of the design matrix.
.. code-block:: default
z_map = second_level_model.compute_contrast(output_type='z_score')
We threshold the second level contrast at uncorrected p < 0.001 and plot
.. code-block:: default
from scipy.stats import norm
p_val = 0.001
p001_uncorrected = norm.isf(p_val)
from nilearn.glm import cluster_level_inference
proportion_true_discoveries_img = cluster_level_inference(
z_map, threshold=[3, 4, 5], alpha=.05)
plotting.plot_stat_map(
proportion_true_discoveries_img, threshold=0.,
display_mode='z', vmax=1, colorbar=True,
title='group left-right button press, proportion true positives')
plotting.plot_stat_map(
z_map, threshold=p001_uncorrected, colorbar=True, display_mode='z',
title='group left-right button press (uncorrected p < 0.001)')
plotting.show()
.. rst-class:: sphx-glr-horizontal
*
.. image:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_proportion_activated_voxels_001.png
:alt: plot proportion activated voxels
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_proportion_activated_voxels_002.png
:alt: plot proportion activated voxels
:class: sphx-glr-multi-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 5.059 seconds)
.. _sphx_glr_download_auto_examples_05_glm_second_level_plot_proportion_activated_voxels.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/05_glm_second_level/plot_proportion_activated_voxels.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_proportion_activated_voxels.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_proportion_activated_voxels.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_