.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_05_glm_second_level_plot_oasis.py:
Voxel-Based Morphometry on Oasis dataset
========================================
This example uses Voxel-Based Morphometry (VBM) to study the relationship
between aging, sex and gray matter density.
The data come from the `OASIS `_ project.
If you use it, you need to agree with the data usage agreement available
on the website.
It has been run through a standard VBM pipeline (using SPM8 and
NewSegment) to create VBM maps, which we study here.
VBM analysis of aging
---------------------
We run a standard GLM analysis to study the association between age
and gray matter density from the VBM data. We use only 100 subjects
from the OASIS dataset to limit the memory usage.
Note that more power would be obtained from using a larger sample of subjects.
.. code-block:: default
# Authors: Bertrand Thirion, , July 2018
# Elvis Dhomatob, , Apr. 2014
# Virgile Fritsch, , Apr 2014
# Gael Varoquaux, Apr 2014
n_subjects = 100 # more subjects requires more memory
Load Oasis dataset
------------------
.. code-block:: default
from nilearn import datasets
oasis_dataset = datasets.fetch_oasis_vbm(n_subjects=n_subjects)
gray_matter_map_filenames = oasis_dataset.gray_matter_maps
age = oasis_dataset.ext_vars['age'].astype(float)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.
output = genfromtxt(fname, **kwargs)
Sex is encoded as 'M' or 'F'. Hence, we make it a binary variable.
.. code-block:: default
sex = oasis_dataset.ext_vars['mf'] == b'F'
Print basic information on the dataset.
.. code-block:: default
print('First gray-matter anatomy image (3D) is located at: %s' %
oasis_dataset.gray_matter_maps[0]) # 3D data
print('First white-matter anatomy image (3D) is located at: %s' %
oasis_dataset.white_matter_maps[0]) # 3D data
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
First gray-matter anatomy image (3D) is located at: /home/varoquau/nilearn_data/oasis1/OAS1_0001_MR1/mwrc1OAS1_0001_MR1_mpr_anon_fslswapdim_bet.nii.gz
First white-matter anatomy image (3D) is located at: /home/varoquau/nilearn_data/oasis1/OAS1_0001_MR1/mwrc2OAS1_0001_MR1_mpr_anon_fslswapdim_bet.nii.gz
Get a mask image: A mask of the cortex of the ICBM template.
.. code-block:: default
gm_mask = datasets.fetch_icbm152_brain_gm_mask()
Resample the images, since this mask has a different resolution.
.. code-block:: default
from nilearn.image import resample_to_img
mask_img = resample_to_img(
gm_mask, gray_matter_map_filenames[0], interpolation='nearest')
Analyse data
------------
First, we create an adequate design matrix with three columns: 'age',
'sex', 'intercept'.
.. code-block:: default
import pandas as pd
import numpy as np
intercept = np.ones(n_subjects)
design_matrix = pd.DataFrame(np.vstack((age, sex, intercept)).T,
columns=['age', 'sex', 'intercept'])
Let's plot the design matrix.
.. code-block:: default
from nilearn.plotting import plot_design_matrix
ax = plot_design_matrix(design_matrix)
ax.set_title('Second level design matrix', fontsize=12)
ax.set_ylabel('maps')
.. image:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_oasis_001.png
:alt: Second level design matrix
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Text(-11.902777777777779, 0.5, 'maps')
Next, we specify and fit the second-level model when loading the data and
also smooth a little bit to improve statistical behavior.
.. code-block:: default
from nilearn.glm.second_level import SecondLevelModel
second_level_model = SecondLevelModel(smoothing_fwhm=2.0, mask_img=mask_img)
second_level_model.fit(gray_matter_map_filenames,
design_matrix=design_matrix)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
SecondLevelModel(mask_img=,
smoothing_fwhm=2.0)
Estimating the contrast is very simple. We can just provide the column
name of the design matrix.
.. code-block:: default
z_map = second_level_model.compute_contrast(second_level_contrast=[1, 0, 0],
output_type='z_score')
We threshold the second level contrast at uncorrected p < 0.001 and plot it.
.. code-block:: default
from nilearn import plotting
from nilearn.glm import threshold_stats_img
_, threshold = threshold_stats_img(
z_map, alpha=.05, height_control='fdr')
print('The FDR=.05-corrected threshold is: %.3g' % threshold)
display = plotting.plot_stat_map(
z_map, threshold=threshold, colorbar=True, display_mode='z',
cut_coords=[-4, 26],
title='age effect on grey matter density (FDR = .05)')
plotting.show()
.. image:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_oasis_002.png
:alt: plot oasis
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
The FDR=.05-corrected threshold is: 2.4
We can also study the effect of sex by computing the contrast, thresholding
it and plot the resulting map.
.. code-block:: default
z_map = second_level_model.compute_contrast(second_level_contrast='sex',
output_type='z_score')
_, threshold = threshold_stats_img(
z_map, alpha=.05, height_control='fdr')
plotting.plot_stat_map(
z_map, threshold=threshold, colorbar=True,
title='sex effect on grey matter density (FDR = .05)')
.. image:: /auto_examples/05_glm_second_level/images/sphx_glr_plot_oasis_003.png
:alt: plot oasis
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Note that there does not seem to be any significant effect of sex on
grey matter density on that dataset.
Generating a report
-------------------
It can be useful to quickly generate a
portable, ready-to-view report with most of the pertinent information.
This is easy to do if you have a fitted model and the list of contrasts,
which we do here.
.. code-block:: default
from nilearn.reporting import make_glm_report
icbm152_2009 = datasets.fetch_icbm152_2009()
report = make_glm_report(model=second_level_model,
contrasts=['age', 'sex'],
bg_img=icbm152_2009['t1'],
)
We have several ways to access the report:
.. code-block:: default
# report # This report can be viewed in a notebook
# report.save_as_html('report.html')
# report.open_in_browser()
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 4 minutes 30.841 seconds)
.. _sphx_glr_download_auto_examples_05_glm_second_level_plot_oasis.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/05_glm_second_level/plot_oasis.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_oasis.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_oasis.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_