.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_04_glm_first_level_plot_predictions_residuals.py: Predicted time series and residuals =================================== Here we fit a First Level GLM with the `minimize_memory`-argument set to `False`. By doing so, the `FirstLevelModel`-object stores the residuals, which we can then inspect. Also, the predicted time series can be extracted, which is useful to assess the quality of the model fit. Import modules -------------- .. code-block:: default from nilearn.datasets import fetch_spm_auditory from nilearn import image from nilearn import masking import pandas as pd # load fMRI data subject_data = fetch_spm_auditory() fmri_img = image.concat_imgs(subject_data.func) # Make an average mean_img = image.mean_img(fmri_img) mask = masking.compute_epi_mask(mean_img) # Clean and smooth data fmri_img = image.clean_img(fmri_img, standardize=False) fmri_img = image.smooth_img(fmri_img, 5.) # load events events = pd.read_table(subject_data['events']) Fit model --------- Note that `minimize_memory` is set to `False` so that `FirstLevelModel` stores the residuals. `signal_scaling` is set to False, so we keep the same scaling as the original data in `fmri_img`. .. code-block:: default from nilearn.glm.first_level import FirstLevelModel fmri_glm = FirstLevelModel(t_r=7, drift_model='cosine', signal_scaling=False, mask_img=mask, minimize_memory=False) fmri_glm = fmri_glm.fit(fmri_img, events) Calculate and plot contrast --------------------------- .. code-block:: default from nilearn import plotting z_map = fmri_glm.compute_contrast('active - rest') plotting.plot_stat_map(z_map, bg_img=mean_img, threshold=3.1) .. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_001.png :alt: plot predictions residuals :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Extract the largest clusters ---------------------------- .. code-block:: default from nilearn.reporting import get_clusters_table from nilearn import input_data table = get_clusters_table(z_map, stat_threshold=3.1, cluster_threshold=20).set_index('Cluster ID', drop=True) table.head() # get the 6 largest clusters' max x, y, and z coordinates coords = table.loc[range(1, 7), ['X', 'Y', 'Z']].values # extract time series from each coordinate masker = input_data.NiftiSpheresMasker(coords) real_timeseries = masker.fit_transform(fmri_img) predicted_timeseries = masker.fit_transform(fmri_glm.predicted[0]) Plot predicted and actual time series for 6 most significant clusters --------------------------------------------------------------------- .. code-block:: default import matplotlib.pyplot as plt # colors for each of the clusters colors = ['blue', 'navy', 'purple', 'magenta', 'olive', 'teal'] # plot the time series and corresponding locations fig1, axs1 = plt.subplots(2, 6) for i in range(0, 6): # plotting time series axs1[0, i].set_title('Cluster peak {}\n'.format(coords[i])) axs1[0, i].plot(real_timeseries[:, i], c=colors[i], lw=2) axs1[0, i].plot(predicted_timeseries[:, i], c='r', ls='--', lw=2) axs1[0, i].set_xlabel('Time') axs1[0, i].set_ylabel('Signal intensity', labelpad=0) # plotting image below the time series roi_img = plotting.plot_stat_map( z_map, cut_coords=[coords[i][2]], threshold=3.1, figure=fig1, axes=axs1[1, i], display_mode='z', colorbar=False, bg_img=mean_img) roi_img.add_markers([coords[i]], colors[i], 300) fig1.set_size_inches(24, 14) .. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_002.png :alt: Cluster peak [-60. -6. 42.] , Cluster peak [60. 0. 36.] , Cluster peak [30. -9. 12.] , Cluster peak [-27. -3. 15.] , Cluster peak [57. 21. 75.] , Cluster peak [39. 33. 51.] :class: sphx-glr-single-img Get residuals ------------- .. code-block:: default resid = masker.fit_transform(fmri_glm.residuals[0]) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/nilearn/nilearn/glm/regression.py:353: FutureWarning: 'resid' from RegressionResults has been deprecated and will be removed. Please use 'residuals' instead. warnings.warn("'resid' from RegressionResults " Plot distribution of residuals ------------------------------ Note that residuals are not really distributed normally. .. code-block:: default fig2, axs2 = plt.subplots(2, 3) axs2 = axs2.flatten() for i in range(0, 6): axs2[i].set_title('Cluster peak {}\n'.format(coords[i])) axs2[i].hist(resid[:, i], color=colors[i]) print('Mean residuals: {}'.format(resid[:, i].mean())) fig2.set_size_inches(12, 7) fig2.tight_layout() .. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_003.png :alt: Cluster peak [-60. -6. 42.] , Cluster peak [60. 0. 36.] , Cluster peak [30. -9. 12.] , Cluster peak [-27. -3. 15.] , Cluster peak [57. 21. 75.] , Cluster peak [39. 33. 51.] :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Mean residuals: 4.292862361883938e-15 Mean residuals: -0.05424372033882641 Mean residuals: 0.002312282850652251 Mean residuals: 0.011694403920156379 Mean residuals: 0.002376301213266633 Mean residuals: -0.004646020538525031 Plot R-squared -------------- Because we stored the residuals, we can plot the R-squared: the proportion of explained variance of the GLM as a whole. Note that the R-squared is markedly lower deep down the brain, where there is more physiological noise and we are further away from the receive coils. However, R-Squared should be interpreted with a grain of salt. The R-squared value will necessarily increase with the addition of more factors (such as rest, active, drift, motion) into the GLM. Additionally, we are looking at the overall fit of the model, so we are unable to say whether a voxel/region has a large R-squared value because the voxel/region is responsive to the experiment (such as active or rest) or because the voxel/region fits the noise factors (such as drift or motion) that could be present in the GLM. To isolate the influence of the experiment, we can use an F-test as shown in the next section. .. code-block:: default plotting.plot_stat_map(fmri_glm.r_square[0], bg_img=mean_img, threshold=.1, display_mode='z', cut_coords=7) .. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_004.png :alt: plot predictions residuals :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Calculate and Plot F-test ------------------------- The F-test tells you how well the GLM fits effects of interest such as the active and rest conditions together. This is different from R-squared, which tells you how well the overall GLM fits the data, including active, rest and all the other columns in the design matrix such as drift and motion. .. code-block:: default import numpy as np design_matrix = fmri_glm.design_matrices_[0] # contrast with a one for "active" and zero everywhere else active = np.array([1 if c == 'active' else 0 for c in design_matrix.columns]) # contrast with a one for "rest" and zero everywhere else rest = np.array([1 if c == 'rest' else 0 for c in design_matrix.columns]) effects_of_interest = np.vstack((active, rest)) # f-test for rest and activity z_map_ftest = fmri_glm.compute_contrast( effects_of_interest, stat_type='F', output_type='z_score') plotting.plot_stat_map(z_map_ftest, bg_img=mean_img, threshold=3.1, display_mode='z', cut_coords=7) .. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_predictions_residuals_005.png :alt: plot predictions residuals :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 34.613 seconds) .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_predictions_residuals.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/04_glm_first_level/plot_predictions_residuals.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_predictions_residuals.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_predictions_residuals.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_