.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_04_glm_first_level_plot_fixed_effects.py:
Example of explicit fixed effects fMRI model fitting
====================================================
This example illustrates how to run a fixed effects model based on
pre-computed statistics. This is helpful when the initial models
have to be fit separately.
For details on the data, please see:
Dehaene-Lambertz G, Dehaene S, Anton JL, Campagne A, Ciuciu P, Dehaene
G, Denghien I, Jobert A, LeBihan D, Sigman M, Pallier C, Poline
JB. Functional segregation of cortical language areas by sentence
repetition. Hum Brain Mapp. 2006: 27:360--371.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2653076#R11
Please see `Simple example of two-session fMRI model fitting
`_
example for details. The main difference is that
the fixed-effects model is run explicitly here,
after GLM fitting on two sessions.
Prepare data and analysis parameters
--------------------------------------
Inspecting 'data', we note that there are two sessions
.. code-block:: default
from nilearn.datasets import func
data = func.fetch_fiac_first_level()
fmri_img = [data['func1'], data['func2']]
Create a mean image for plotting purpose
.. code-block:: default
from nilearn.image import mean_img
mean_img_ = mean_img(fmri_img[0])
The design matrices were pre-computed, we simply put them in a list of
DataFrames
.. code-block:: default
design_files = [data['design_matrix1'], data['design_matrix2']]
import pandas as pd
import numpy as np
design_matrices = [pd.DataFrame(np.load(df)['X']) for df in design_files]
GLM estimation
----------------------------------
GLM specification. Note that the mask was provided in the dataset.
So we use it.
.. code-block:: default
from nilearn.glm.first_level import FirstLevelModel
fmri_glm = FirstLevelModel(mask_img=data['mask'], smoothing_fwhm=5,
minimize_memory=True)
Compute fixed effects of the two runs and compute related images
For this, we first define the contrasts as we would do for a single session
.. code-block:: default
n_columns = design_matrices[0].shape[1]
contrast_val = np.hstack(([-1, -1, 1, 1], np.zeros(n_columns - 4)))
Statistics for the first session
.. code-block:: default
from nilearn import plotting
cut_coords = [-129, -126, 49]
contrast_id = 'DSt_minus_SSt'
fmri_glm = fmri_glm.fit(fmri_img[0], design_matrices=design_matrices[0])
summary_statistics_session1 = fmri_glm.compute_contrast(
contrast_val, output_type='all')
plotting.plot_stat_map(
summary_statistics_session1['z_score'],
bg_img=mean_img_, threshold=3.0, cut_coords=cut_coords,
title='{0}, first session'.format(contrast_id))
.. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fixed_effects_001.png
:alt: plot fixed effects
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Statistics for the second session
.. code-block:: default
fmri_glm = fmri_glm.fit(fmri_img[1], design_matrices=design_matrices[1])
summary_statistics_session2 = fmri_glm.compute_contrast(
contrast_val, output_type='all')
plotting.plot_stat_map(
summary_statistics_session2['z_score'],
bg_img=mean_img_, threshold=3.0, cut_coords=cut_coords,
title='{0}, second session'.format(contrast_id))
.. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fixed_effects_002.png
:alt: plot fixed effects
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Fixed effects statistics
.. code-block:: default
from nilearn.glm.contrasts import compute_fixed_effects
contrast_imgs = [summary_statistics_session1['effect_size'],
summary_statistics_session2['effect_size']]
variance_imgs = [summary_statistics_session1['effect_variance'],
summary_statistics_session2['effect_variance']]
fixed_fx_contrast, fixed_fx_variance, fixed_fx_stat = compute_fixed_effects(
contrast_imgs, variance_imgs, data['mask'])
plotting.plot_stat_map(
fixed_fx_stat, bg_img=mean_img_, threshold=3.0, cut_coords=cut_coords,
title='{0}, fixed effects'.format(contrast_id))
.. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fixed_effects_003.png
:alt: plot fixed effects
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Not unexpectedly, the fixed effects version displays higher peaks than the
input sessions. Computing fixed effects enhances the signal-to-noise ratio of
the resulting brain maps
Note however that, technically, the output maps of the fixed effects map is a
t statistic (not a z statistic)
.. code-block:: default
plotting.show()
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 12.532 seconds)
.. _sphx_glr_download_auto_examples_04_glm_first_level_plot_fixed_effects.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/04_glm_first_level/plot_fixed_effects.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_fixed_effects.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_fixed_effects.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_