.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_04_glm_first_level_plot_fiac_analysis.py:
Simple example of two-session fMRI model fitting
================================================
Here, we will go through a full step-by-step example of fitting a GLM to
experimental data and visualizing the results. This is done on two runs of one
subject of the FIAC dataset.
For details on the data, please see:
Dehaene-Lambertz G, Dehaene S, Anton JL, Campagne A, Ciuciu P, Dehaene
G, Denghien I, Jobert A, LeBihan D, Sigman M, Pallier C, Poline
JB. Functional segregation of cortical language areas by sentence
repetition. Hum Brain Mapp. 2006: 27:360--371.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2653076#R11
More specifically:
1. A sequence of fMRI volumes is loaded.
2. A design matrix describing all the effects related to the data is computed.
3. A mask of the useful brain volume is computed.
4. A GLM is applied to the dataset (effect/covariance,
then contrast estimation).
Technically, this example shows how to handle two sessions that contain the
same experimental conditions. The model directly returns a fixed effect of the
statistics across the two sessions.
Create a write directory to work,
it will be a 'results' subdirectory of the current directory.
.. code-block:: default
from os import mkdir, path, getcwd
write_dir = path.join(getcwd(), 'results')
if not path.exists(write_dir):
mkdir(write_dir)
Prepare data and analysis parameters
--------------------------------------
Note that there are two sessions.
.. code-block:: default
from nilearn.datasets import func
data = func.fetch_fiac_first_level()
fmri_img = [data['func1'], data['func2']]
Create a mean image for plotting purpose.
.. code-block:: default
from nilearn.image import mean_img
mean_img_ = mean_img(fmri_img[0])
The design matrices were pre-computed, we simply put them in a list of
DataFrames.
.. code-block:: default
design_files = [data['design_matrix1'], data['design_matrix2']]
import pandas as pd
import numpy as np
design_matrices = [pd.DataFrame(np.load(df)['X']) for df in design_files]
GLM estimation
----------------------------------
GLM specification. Note that the mask was provided in the dataset. So we use it.
.. code-block:: default
from nilearn.glm.first_level import FirstLevelModel
fmri_glm = FirstLevelModel(mask_img=data['mask'], minimize_memory=True)
Let's fit the GLM.
.. code-block:: default
fmri_glm = fmri_glm.fit(fmri_img, design_matrices=design_matrices)
Compute fixed effects of the two runs and compute related images.
For this, we first define the contrasts as we would do for a single session.
.. code-block:: default
n_columns = design_matrices[0].shape[1]
def pad_vector(contrast_, n_columns):
"""A small routine to append zeros in contrast vectors"""
return np.hstack((contrast_, np.zeros(n_columns - len(contrast_))))
Contrast specification
.. code-block:: default
contrasts = {'SStSSp_minus_DStDSp': pad_vector([1, 0, 0, -1], n_columns),
'DStDSp_minus_SStSSp': pad_vector([-1, 0, 0, 1], n_columns),
'DSt_minus_SSt': pad_vector([-1, -1, 1, 1], n_columns),
'DSp_minus_SSp': pad_vector([-1, 1, -1, 1], n_columns),
'DSt_minus_SSt_for_DSp': pad_vector([0, -1, 0, 1], n_columns),
'DSp_minus_SSp_for_DSt': pad_vector([0, 0, -1, 1], n_columns),
'Deactivation': pad_vector([-1, -1, -1, -1, 4], n_columns),
'Effects_of_interest': np.eye(n_columns)[:5]}
Next, we compute and plot the statistics.
.. code-block:: default
from nilearn import plotting
print('Computing contrasts...')
for index, (contrast_id, contrast_val) in enumerate(contrasts.items()):
print(' Contrast % 2i out of %i: %s' % (
index + 1, len(contrasts), contrast_id))
# Estimate the contasts. Note that the model implictly computes a fixed
# effect across the two sessions
z_map = fmri_glm.compute_contrast(
contrast_val, output_type='z_score')
# write the resulting stat images to file
z_image_path = path.join(write_dir, '%s_z_map.nii.gz' % contrast_id)
z_map.to_filename(z_image_path)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Computing contrasts...
Contrast 1 out of 8: SStSSp_minus_DStDSp
/home/varoquau/dev/nilearn/nilearn/glm/first_level/first_level.py:580: UserWarning: One contrast given, assuming it for all 2 runs
warn('One contrast given, assuming it for all %d runs' % n_runs)
Contrast 2 out of 8: DStDSp_minus_SStSSp
Contrast 3 out of 8: DSt_minus_SSt
Contrast 4 out of 8: DSp_minus_SSp
Contrast 5 out of 8: DSt_minus_SSt_for_DSp
Contrast 6 out of 8: DSp_minus_SSp_for_DSt
Contrast 7 out of 8: Deactivation
Contrast 8 out of 8: Effects_of_interest
/home/varoquau/dev/nilearn/nilearn/glm/contrasts.py:298: UserWarning: Running approximate fixed effects on F statistics.
warn('Running approximate fixed effects on F statistics.')
We can then compare session-specific and fixed effects.
Here, we compare the activation mas produced from each session separately and
then the fixed effects version.
.. code-block:: default
contrast_id = 'Effects_of_interest'
Compute the statistics for the first session.
.. code-block:: default
fmri_glm = fmri_glm.fit(fmri_img[0], design_matrices=design_matrices[0])
z_map = fmri_glm.compute_contrast(
contrasts[contrast_id], output_type='z_score')
plotting.plot_stat_map(
z_map, bg_img=mean_img_, threshold=3.0,
title='%s, first session' % contrast_id)
.. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fiac_analysis_001.png
:alt: plot fiac analysis
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Compute the statistics for the second session.
.. code-block:: default
fmri_glm = fmri_glm.fit(fmri_img[1], design_matrices=design_matrices[1])
z_map = fmri_glm.compute_contrast(
contrasts[contrast_id], output_type='z_score')
plotting.plot_stat_map(
z_map, bg_img=mean_img_, threshold=3.0,
title='%s, second session' % contrast_id)
.. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fiac_analysis_002.png
:alt: plot fiac analysis
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Compute the Fixed effects statistics.
.. code-block:: default
fmri_glm = fmri_glm.fit(fmri_img, design_matrices=design_matrices)
z_map = fmri_glm.compute_contrast(
contrasts[contrast_id], output_type='z_score')
plotting.plot_stat_map(
z_map, bg_img=mean_img_, threshold=3.0,
title='%s, fixed effects' % contrast_id)
plotting.show()
.. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_fiac_analysis_003.png
:alt: plot fiac analysis
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/nilearn/nilearn/glm/first_level/first_level.py:580: UserWarning: One contrast given, assuming it for all 2 runs
warn('One contrast given, assuming it for all %d runs' % n_runs)
/home/varoquau/dev/nilearn/nilearn/glm/contrasts.py:298: UserWarning: Running approximate fixed effects on F statistics.
warn('Running approximate fixed effects on F statistics.')
Not unexpectedly, the fixed effects version displays higher peaks than the
input sessions. Computing fixed effects enhances the signal-to-noise ratio of
the resulting brain maps.
Generating a report
-------------------
Since we have already computed the FirstLevelModel and
and have the contrast, we can quickly create a summary report.
.. code-block:: default
from nilearn.reporting import make_glm_report
report = make_glm_report(fmri_glm,
contrasts,
bg_img=mean_img_,
)
We have several ways to access the report:
.. code-block:: default
# report # This report can be viewed in a notebook
# report.save_as_html('report.html')
# report.open_in_browser()
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 1.912 seconds)
.. _sphx_glr_download_auto_examples_04_glm_first_level_plot_fiac_analysis.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/04_glm_first_level/plot_fiac_analysis.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_fiac_analysis.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_fiac_analysis.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_