.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_04_glm_first_level_plot_design_matrix.py:
Examples of design matrices
===========================
Three examples of design matrices specification and computation for first-level
fMRI data analysis (event-related design, block design, FIR design).
This examples requires matplotlib.
.. code-block:: default
try:
import matplotlib.pyplot as plt
except ImportError:
raise RuntimeError("This script needs the matplotlib library")
Define parameters
----------------------------------
At first, we define parameters related to the images acquisition.
.. code-block:: default
import numpy as np
tr = 1.0 # repetition time is 1 second
n_scans = 128 # the acquisition comprises 128 scans
frame_times = np.arange(n_scans) * tr # here are the correspoding frame times
Then we define parameters related to the experimental design.
.. code-block:: default
# these are the types of the different trials
conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c3', 'c3', 'c3']
duration = [1., 1., 1., 1., 1., 1., 1., 1., 1.]
# these are the corresponding onset times
onsets = [30., 70., 100., 10., 30., 90., 30., 40., 60.]
# Next, we simulate 6 motion parameters jointly observed with fMRI acquisitions
motion = np.cumsum(np.random.randn(n_scans, 6), 0)
# The 6 parameters correspond to three translations and three
# rotations describing rigid body motion
add_reg_names = ['tx', 'ty', 'tz', 'rx', 'ry', 'rz']
Create design matrices
-------------------------------------
The same parameters allow us to obtain a variety of design matrices.
We first create an events object.
.. code-block:: default
import pandas as pd
events = pd.DataFrame({'trial_type': conditions, 'onset': onsets,
'duration': duration})
We sample the events into a design matrix, also including additional
regressors.
.. code-block:: default
hrf_model = 'glover'
from nilearn.glm.first_level import make_first_level_design_matrix
X1 = make_first_level_design_matrix(
frame_times, events, drift_model='polynomial', drift_order=3,
add_regs=motion, add_reg_names=add_reg_names, hrf_model=hrf_model)
Now we compute a block design matrix. We add duration to create the blocks.
For this we first define an event structure that includes the duration
parameter.
.. code-block:: default
duration = 7. * np.ones(len(conditions))
events = pd.DataFrame({'trial_type': conditions, 'onset': onsets,
'duration': duration})
Then we sample the design matrix.
.. code-block:: default
X2 = make_first_level_design_matrix(frame_times, events,
drift_model='polynomial', drift_order=3,
hrf_model=hrf_model)
Finally we compute a FIR model
.. code-block:: default
events = pd.DataFrame({'trial_type': conditions, 'onset': onsets,
'duration': duration})
hrf_model = 'FIR'
X3 = make_first_level_design_matrix(frame_times, events, hrf_model='fir',
drift_model='polynomial', drift_order=3,
fir_delays=np.arange(1, 6))
Here are the three designs side by side.
.. code-block:: default
from nilearn.plotting import plot_design_matrix
fig, (ax1, ax2, ax3) = plt.subplots(figsize=(10, 6), nrows=1, ncols=3)
plot_design_matrix(X1, ax=ax1)
ax1.set_title('Event-related design matrix', fontsize=12)
plot_design_matrix(X2, ax=ax2)
ax2.set_title('Block design matrix', fontsize=12)
plot_design_matrix(X3, ax=ax3)
ax3.set_title('FIR design matrix', fontsize=12)
.. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_design_matrix_001.png
:alt: Event-related design matrix, Block design matrix, FIR design matrix
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Text(0.5, 1.1836351585666691, 'FIR design matrix')
Let's improve the layout and show the result.
.. code-block:: default
plt.subplots_adjust(left=0.08, top=0.9, bottom=0.21, right=0.96, wspace=0.3)
plt.show()
.. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_design_matrix_002.png
:alt: plot design matrix
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/nilearn/examples/04_glm_first_level/plot_design_matrix.py:95: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
plt.show()
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.913 seconds)
.. _sphx_glr_download_auto_examples_04_glm_first_level_plot_design_matrix.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/04_glm_first_level/plot_design_matrix.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_design_matrix.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_design_matrix.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_